Transactional and Incremental Type Inference from Data Updates

A distinctive property of relational database systems is the ability to perform data updates and queries in atomic blocks called transactions, with the well known ACID properties. To date, the ability of systems performing reasoning to maintain the ACID properties even over data held within a relational database, has been largely ignored. This paper studies an approach to reasoning over data from OWL 2 ontologies held in a relational database, where the ACID properties of transactions are maintained. Taking an incremental approach to maintaining materialised views of the result of reasoning, the approach is demonstrated to support a query and reasoning performance comparable to or better than other OWL reasoning systems, yet adding the important benefit of supporting transactions.

[1]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[2]  Yu Liu,et al.  Transactional and Incremental Type Inference from Data Updates , 2015, Comput. J..

[3]  Frank van Harmelen,et al.  WebPIE: A Web-scale Parallel Inference Engine using MapReduce , 2012, J. Web Semant..

[4]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[5]  Li Ma,et al.  Minerva: A Scalable OWL Ontology Storage and Inference System , 2006, ASWC.

[6]  Ian Horrocks,et al.  Description logic programs: combining logic programs with description logic , 2003, WWW '03.

[7]  Zhe Wu,et al.  Implementing an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in Oracle , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[8]  Markus Krötzsch The Not-So-Easy Task of Computing Class Subsumptions in OWL RL , 2012, International Semantic Web Conference.

[9]  Mohamed E. Fayad Review of SanFrancisco component framework: An introduction by Paul Monday, James Carey, and Mary Dangler Addison-Wesley Longman, Inc., Reading, MA, 2000 , 2000 .

[10]  Sebastian Rudolph,et al.  Orel: Database-Driven Reasoning for OWL 2 Profiles , 2010, Description Logics.

[11]  Evren Sirin,et al.  Evaluation of Query Rewriting Approaches for OWL 2 , 2012, SSWS+HPCSW@ISWC.

[12]  Jeff Heflin,et al.  DLDB2: A Scalable Multi-perspective Semantic Web Repository , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[13]  Yu Liu,et al.  SQOWL2: Transactional Type Inference for OWL 2 DL in an RDBMS , 2013, Description Logics.

[14]  Peter McBrien,et al.  SQOWL: Type Inference in an RDBMS , 2010, ER.

[15]  Herman J. ter Horst,et al.  Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary , 2005, J. Web Semant..

[16]  Diego Calvanese,et al.  The Ontop Framework for Ontology Based Data Access , 2014, CSWS.

[17]  Jorge Pérez,et al.  Simple and Efficient Minimal RDFS , 2009, J. Web Semant..

[18]  Frank van Harmelen,et al.  DynamiTE: Parallel Materialization of Dynamic RDF Data , 2013, SEMWEB.

[19]  Boris Motik,et al.  Completeness Guarantees for Incomplete Ontology Reasoners: Theory and Practice , 2014, J. Artif. Intell. Res..

[20]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[21]  V. S. Subrahmanian,et al.  Maintaining views incrementally , 1993, SIGMOD Conference.

[22]  Yavor Nenov,et al.  Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm , 2015, AAAI.

[23]  Sean Bechhofer,et al.  The OWL API: A Java API for OWL ontologies , 2011, Semantic Web.

[24]  Yarden Katz,et al.  Pellet: A practical OWL-DL reasoner , 2007, J. Web Semant..

[25]  Georgios Meditskos,et al.  DLEJena: A practical forward-chaining OWL 2 RL reasoner combining Jena and Pellet , 2010, J. Web Semant..

[26]  Boris Motik,et al.  HermiT: An OWL 2 Reasoner , 2014, Journal of Automated Reasoning.

[27]  Yevgeny Kazakov,et al.  Classifying ELH Ontologies In SQL Databases , 2009, OWLED.

[28]  Georgios Meditskos,et al.  Combining a DL Reasoner and a Rule Engine for Improving Entailment-Based OWL Reasoning , 2008, International Semantic Web Conference.

[29]  Jean-Marie Nicolas,et al.  An Outline of BDGEN: A Deductive DBMS , 1983, IFIP Congress.

[30]  Ian Horrocks,et al.  FaCT++ Description Logic Reasoner: System Description , 2006, IJCAR.

[31]  Andreas Reuter,et al.  Principles of transaction-oriented database recovery , 1983, CSUR.

[32]  Ian Horrocks,et al.  How Incomplete Is Your Semantic Web Reasoner? , 2010, AAAI.

[33]  Boris Motik,et al.  OWL 2: The next step for OWL , 2008, J. Web Semant..

[34]  Bruce Momjian,et al.  PostgreSQL: Introduction and Concepts , 2000 .

[35]  Markus Krötzsch,et al.  OWL 2 Profiles: An Introduction to Lightweight Ontology Languages , 2012, Reasoning Web.

[36]  Kevin Donnelly,et al.  SNOMED-CT: The advanced terminology and coding system for eHealth. , 2006, Studies in health technology and informatics.

[37]  Peter McBrien,et al.  Type inference methods and performance for data in an RDBMS , 2012, SWIM '12.

[38]  Yavor Nenov,et al.  Parallel Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems , 2014, AAAI.

[39]  Bernardo Cuenca Grau,et al.  OWL 2 Web Ontology Language: Profiles , 2009 .

[40]  Atanas Kiryakov,et al.  OWLIM - A Pragmatic Semantic Repository for OWL , 2005, WISE Workshops.

[41]  Carsten Lutz,et al.  Conjunctive Query Answering in the Description Logic EL Using a Relational Database System , 2009, IJCAI.

[42]  Stéphane Bressan,et al.  Introduction to Database Systems , 2005 .