Gene-encoding DNA origami for mammalian cell expression

[1]  E. Willner,et al.  Antigen-Triggered Logic-Gating of DNA Nanodevices , 2021, Journal of the American Chemical Society.

[2]  J. Doudna,et al.  CRISPR–Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells , 2021, bioRxiv.

[3]  D. Irvine,et al.  In Situ Covalent Functionalization of DNA Origami Virus-like Particles. , 2021, ACS nano.

[4]  F. Ricci,et al.  Single antibody detection in a DNA origami nanoantenna , 2021, iScience.

[5]  U. Keyser,et al.  DNA Origami Voltage Sensors for Transmembrane Potentials with Single-Molecule Sensitivity , 2021, bioRxiv.

[6]  Baoquan Ding,et al.  An RNA/DNA hybrid origami-based nanoplatform for efficient gene therapy. , 2021, Nanoscale.

[7]  M. Hagan,et al.  Programmable icosahedral shell system for virus trapping , 2021, Nature Materials.

[8]  Lei Wei,et al.  Hepatitis B virus cccDNA is formed through distinct repair processes of each strand , 2021, Nature Communications.

[9]  T. Liedl,et al.  DNA Origami-Enabled Plasmonic Sensing , 2021, The journal of physical chemistry. C, Nanomaterials and interfaces.

[10]  Hao Yan,et al.  DNA origami , 2021, Nature Reviews Methods Primers.

[11]  Marina Vannucci,et al.  Bayesian statistics and modelling , 2020, Nature Reviews Methods Primers.

[12]  C. Gersbach,et al.  The once and future gene therapy , 2020, Nature Communications.

[13]  Baoquan Ding,et al.  A DNA nanodevice-based vaccine for cancer immunotherapy , 2020, Nature Materials.

[14]  C. Wälti,et al.  Rational design of DNA nanostructures for single molecule biosensing , 2020, Nature Communications.

[15]  Jiye Shi,et al.  DNA Origami-Enabled Engineering of Ligand-Drug Conjugates for Targeted Drug Delivery. , 2020, Small.

[16]  Nicholas S. McCarty,et al.  Multiplexed CRISPR technologies for gene editing and transcriptional regulation , 2020, Nature Communications.

[17]  Mark Bathe,et al.  Role of nanoscale antigen organization on B-cell activation probed using DNA origami , 2020, bioRxiv.

[18]  H. Ramézani,et al.  Building machines with DNA molecules , 2019, Nature Reviews Genetics.

[19]  Hendrik Dietz,et al.  Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds , 2019, ACS nano.

[20]  Kurt V Gothelf,et al.  Chemistries for DNA Nanotechnology. , 2019, Chemical reviews.

[21]  Irene Lostalé‐Seijo,et al.  Synthetic materials at the forefront of gene delivery , 2018, Nature Reviews Chemistry.

[22]  Timon Funck,et al.  Sensing Picomolar Concentrations of RNA Using Switchable Plasmonic Chirality. , 2018, Angewandte Chemie.

[23]  Hendrik Dietz,et al.  Sequence-programmable covalent bonding of designed DNA assemblies , 2018, Science Advances.

[24]  Donald E Ingber,et al.  Modulation of the Cellular Uptake of DNA Origami through Control over Mass and Shape. , 2018, Nano letters.

[25]  Chenxiang Lin,et al.  Vesicle Tubulation with Self-Assembling DNA Nanosprings. , 2018, Angewandte Chemie.

[26]  M. Fussenegger,et al.  Synthetic gene circuits for the detection, elimination and prevention of disease , 2018, Nature Biomedical Engineering.

[27]  A. Teleman,et al.  Changes in global translation elongation or initiation rates shape the proteome via the Kozak sequence , 2018, Scientific Reports.

[28]  P. Schwille,et al.  Membrane sculpting by curved DNA origami scaffolds , 2018, Nature Communications.

[29]  Yonggang Ke,et al.  Visualization of the Cellular Uptake and Trafficking of DNA Origami Nanostructures in Cancer Cells. , 2018, Journal of the American Chemical Society.

[30]  Huatai Xu,et al.  In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice , 2018, Nature Neuroscience.

[31]  Hendrik Dietz,et al.  Gigadalton-scale shape-programmable DNA assemblies , 2017, Nature.

[32]  Hendrik Dietz,et al.  Biotechnological mass production of DNA origami , 2017, Nature.

[33]  Hendrik Dietz,et al.  How We Make DNA Origami , 2017, Chembiochem : a European journal of chemical biology.

[34]  T. LaBean,et al.  pH-Driven Actuation of DNA Origami via Parallel I-Motif Sequences in Solution and on Surfaces. , 2017, Bioconjugate chemistry.

[35]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[36]  R. Lister,et al.  Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA , 2017, Chemical science.

[37]  Friedrich C Simmel,et al.  Electrotransfection of Polyamine Folded DNA Origami Structures. , 2016, Nano letters.

[38]  Jing Wang,et al.  A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. , 2016, Journal of the American Chemical Society.

[39]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[40]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[41]  Tai-ming Li,et al.  Construction and Gene Expression Analysis of a Single-Stranded DNA Minivector Based on an Inverted Terminal Repeat of Adeno-Associated Virus , 2015, Molecular Biotechnology.

[42]  T. G. Martin,et al.  Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions , 2014, Angewandte Chemie.

[43]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[44]  Friedrich C Simmel,et al.  Hydrophobic actuation of a DNA origami bilayer structure. , 2014, Angewandte Chemie.

[45]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[46]  Christopher A. Voigt,et al.  Principles of genetic circuit design , 2014, Nature Methods.

[47]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.

[48]  H. Sleiman,et al.  Development and characterization of gene silencing DNA cages. , 2014, Biomacromolecules.

[49]  T. G. Martin,et al.  Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature , 2012, Science.

[50]  T. G. Martin,et al.  Cryo-EM structure of a 3D DNA-origami object , 2012, Proceedings of the National Academy of Sciences.

[51]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[52]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[53]  Jin-Ho Ahn,et al.  Design, assembly, and activity of antisense DNA nanostructures. , 2011, Small.

[54]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[55]  Tim Liedl,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[56]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[57]  P. Mieczkowski,et al.  Detecting ultraviolet damage in single DNA molecules by atomic force microscopy. , 2007, Biophysical journal.

[58]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[59]  J. Mallet,et al.  Optimization of transgene expression at the posttranscriptional level in neural cells: implications for gene therapy. , 2003, Molecular therapy : the journal of the American Society of Gene Therapy.

[60]  M. During,et al.  Replication competent helper functions for recombinant AAV vector generation , 2002, Gene Therapy.

[61]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[62]  D. Mitchell,et al.  Inhibition of transient gene expression in Chinese hamster ovary cells by cyclobutane dimers and (6-4) photoproducts in transfected ultraviolet-irradiated plasmid DNA. , 1989, Plasmid.