Analysis of goal-directed human actions using optimal control models

In this thesis, we address the problem of analyzing goal-directed human actions using the optimal control framework to model these actions. In an optimal control framework, the goals of the action are specified as a cost function whose terms represent the different, often competing, objectives that need to be realized in the course of the action. The relative weight given to the different terms will determine how these objectives are traded off when the human sensorimotor system minimizes the cost function. The cost functions corresponding to different actions are the basic building blocks in our representation. We view the human motor system as a hybrid nonlinear system that switches between different cost functions in response to changing goals and preferences. In the context of this model, we address two problems. The first problem is the estimation of the unknown weighting parameters of a cost function from a segmented and labeled data set for an action. We show that the estimation of these parameters can be cast as a least squares optimization problem and present results for arm motions such as reaching and punching using motion capture data collected from different subjects. The second problem is that of action recognition in which a stream of data is segmented into different actions, where the set of actions to be identified is pre-determined. We show that the problem of action recognition is similar to that of mode estimation in a hybrid system and can be solved using a particle filter if a receding horizon formulation of the optimal controller is adopted. We use the proposed approach to recognize different reaching actions from the 3D hand trajectory of subjects.

[1]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  B. Anderson,et al.  Nonlinear regulator theory and an inverse optimal control problem , 1973 .

[3]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[4]  M. Pandy,et al.  Dynamic optimization of human walking. , 2001, Journal of biomechanical engineering.

[5]  J. Sullivan,et al.  Action Recognition by Shape Matching to Key Frames , 2002 .

[6]  Christoph Bregler,et al.  Learning and recognizing human dynamics in video sequences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Ruggero Frezza,et al.  A control theory approach to the analysis and synthesis of the experimentally observed motion primitives , 2005, Biological Cybernetics.

[8]  Jun Nakanishi,et al.  Learning Movement Primitives , 2005, ISRR.

[9]  N. Hogan An organizing principle for a class of voluntary movements , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Y Uno,et al.  Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. , 1999, Journal of neurophysiology.

[11]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[12]  Yoshiaki Taniai,et al.  Optimality of Reaching Movements Based on Energetic Cost under the Influence of Signal-Dependent Noise , 2007, ICONIP.

[13]  D. Himmelblau,et al.  Optimal control via collocation and non-linear programming , 1975 .

[14]  A. E. Bryson,et al.  Optimum Rocket Trajectories With Aerodynamic Drag , 1958 .

[15]  Z. Rekasius,et al.  On an inverse problem in optimal control , 1964 .

[16]  Yong Rui,et al.  Segmenting visual actions based on spatio-temporal motion patterns , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[17]  C. Ogden,et al.  Anthropometric reference data for children and adults: U.S. population, 1999-2002. , 2005, Advance data.

[18]  Stefano Soatto,et al.  Recognition of human gaits , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[19]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[20]  Cristian Sminchisescu,et al.  Conditional models for contextual human motion recognition , 2006, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[21]  George W. Irwin,et al.  Multiple model bootstrap filter for maneuvering target tracking , 2000, IEEE Trans. Aerosp. Electron. Syst..

[22]  Emanuel Todorov,et al.  Cosine Tuning Minimizes Motor Errors , 2002, Neural Computation.

[23]  Intille,et al.  Representation and Visual Recognition of Complex , Multi-agent Actions using Belief , 1998 .

[24]  M. Kawato,et al.  Formation and control of optimal trajectory in human multijoint arm movement , 1989, Biological Cybernetics.

[25]  H. G. Moyer,et al.  A trajectory optimization technique based upon the theory of the second variation. , 1963 .

[26]  Junji Yamato,et al.  Recognizing human action in time-sequential images using hidden Markov model , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Michael K. Pitt,et al.  Auxiliary Variable Based Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[28]  G. Rizzolatti,et al.  Parietal Lobe: From Action Organization to Intention Understanding , 2005, Science.

[29]  Eyal Amir,et al.  Bayesian Inverse Reinforcement Learning , 2007, IJCAI.

[30]  Matthew Brand,et al.  Discovery and Segmentation of Activities in Video , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  M G Pandy,et al.  Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. , 1995, Journal of biomechanical engineering.

[32]  Maja J. Mataric,et al.  Automated derivation of behavior vocabularies for autonomous humanoid motion , 2003, AAMAS '03.

[33]  Emanuel Todorov,et al.  From task parameters to motor synergies: A hierarchical framework for approximately optimal control of redundant manipulators , 2005, J. Field Robotics.

[34]  Mitsuo Kawato,et al.  A via-point time optimization algorithm for complex sequential trajectory formation , 2004, Neural Networks.

[35]  R.W.H. Sargent,et al.  Off Line Computation of Optimum Controls for a Plate Distillation Column* Calcul en dehors du circuit des commandes optimales pour une colonne de distillation h plateaux Off-line-Berechnung optimaler Regelungen f'tir den Boden einer Destillationskolonne , 1970 .

[36]  Tamar Flash,et al.  Computational approaches to motor control , 2001, Current Opinion in Neurobiology.

[37]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[38]  Peter Andersson,et al.  Adaptive Forgetting in Recursive Identification through Multiple Models , 1985 .

[39]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[40]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[41]  Jake K. Aggarwal,et al.  A hierarchical Bayesian network for event recognition of human actions and interactions , 2004, Multimedia Systems.

[42]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[43]  N. Bergman,et al.  Auxiliary particle filters for tracking a maneuvering target , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[44]  R. McN. Alexander,et al.  A minimum energy cost hypothesis for human arm trajectories , 1997, Biological Cybernetics.

[45]  Stephen P. Boyd,et al.  Control System Analysis and Synthesis via Linear Matrix Inequalities , 1993, 1993 American Control Conference.

[46]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[47]  F A Mussa-Ivaldi,et al.  Computations underlying the execution of movement: a biological perspective. , 1991, Science.

[48]  Eric Horvitz,et al.  Layered representations for learning and inferring office activity from multiple sensory channels , 2004, Comput. Vis. Image Underst..

[49]  Aude Billard,et al.  On Learning, Representing, and Generalizing a Task in a Humanoid Robot , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[50]  Emanuel Todorov,et al.  Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems , 2004, ICINCO.

[51]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[53]  D. Wolpert,et al.  TOPS (Task Optimization in the Presence of Signal-Dependent Noise) model , 2004 .

[54]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[55]  P. Morasso Spatial control of arm movements , 2004, Experimental Brain Research.

[56]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[57]  Daniel M. Wolpert,et al.  Signal-dependent noise determines motor planning , 1998, Nature.

[58]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[59]  Matti Pietikäinen,et al.  Human Activity Recognition Using Sequences of Postures , 2005, MVA.

[60]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[61]  N. de Freitas Rao-Blackwellised particle filtering for fault diagnosis , 2002, Proceedings, IEEE Aerospace Conference.

[62]  Pietro Perona,et al.  Decomposition of human motion into dynamics-based primitives with application to drawing tasks , 2003, Autom..

[63]  Alexander Rm,et al.  A minimum energy cost hypothesis for human arm trajectories. , 1997 .

[64]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[65]  Juergen M.H. Bruckner,et al.  Analysis of Multimodal Systems , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[66]  Maja J. Mataric,et al.  Exemplar-based primitives for humanoid movement classification and control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[67]  Michael I. Jordan,et al.  Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study , 1995, Experimental Brain Research.

[68]  Maja J. Mataric,et al.  Automated Derivation of Primitives for Movement Classification , 2000, Auton. Robots.

[69]  Aude Billard,et al.  Goal-Directed Imitation in a Humanoid Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[70]  Rémi Ronfard,et al.  Automatic Discovery of Action Taxonomies from Multiple Views , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[71]  S. Mitter,et al.  The conjugate gradient method for optimal control problems , 1967 .

[72]  Y. Boers,et al.  Interacting multiple model particle filter , 2003 .

[73]  Mubarak Shah,et al.  Motion-based recognition a survey , 1995, Image Vis. Comput..

[74]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[75]  M. Pandy,et al.  A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions. , 1999, Computer methods in biomechanics and biomedical engineering.

[76]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[77]  Ruzena Bajcsy,et al.  Skeleton-Based Data Compression for Multi-camera Tele-Immersion System , 2007, ISVC.

[78]  E Bizzi,et al.  Motor learning through the combination of primitives. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[79]  Rémi Ronfard,et al.  Action Recognition from Arbitrary Views using 3D Exemplars , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[80]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[81]  James W. Davis,et al.  Real-time recognition of activity using temporal templates , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[82]  J. Breakwell The Optimization of Trajectories , 1959 .

[83]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[84]  A. Barto,et al.  Approximate optimal control as a model for motor learning. , 2005, Psychological review.

[85]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[86]  Andrew Y. Ng,et al.  Pharmacokinetics of a novel formulation of ivermectin after administration to goats , 2000, ICML.

[87]  Pieter Abbeel,et al.  Apprenticeship learning via inverse reinforcement learning , 2004, ICML.

[88]  Aude Billard,et al.  Reinforcement learning for imitating constrained reaching movements , 2007, Adv. Robotics.

[90]  E. Polak,et al.  Theory of optimal control and mathematical programming , 1969 .

[91]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[92]  Kunio Fukunaga,et al.  Natural Language Description of Human Activities from Video Images Based on Concept Hierarchy of Actions , 2002, International Journal of Computer Vision.

[93]  Liang Wang,et al.  Learning and Matching of Dynamic Shape Manifolds for Human Action Recognition , 2007, IEEE Transactions on Image Processing.

[94]  E. Bizzi,et al.  Human arm trajectory formation. , 1982, Brain : a journal of neurology.

[95]  E. Polak An historical survey of computational methods in optimal control. , 1973 .

[96]  Yiannis Aloimonos,et al.  View-Invariant Modeling and Recognition of Human Actions Using Grammars , 2006, WDV.

[97]  Odest Chadwicke Jenkins,et al.  Interactive Human Pose and Action Recognition Using Dynamical Motion Primitives , 2007, Int. J. Humanoid Robotics.

[98]  Mitsuo Kawato,et al.  TOPS (Task Optimization in the Presence of Signal-Dependent Noise) model , 2004, Systems and Computers in Japan.

[99]  S. Shankar Sastry,et al.  Learning control of complex skills , 1998 .

[100]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[101]  K. Ito,et al.  On State Estimation in Switching Environments , 1970 .

[102]  A.D. Kuo,et al.  An optimal control model for analyzing human postural balance , 1995, IEEE Transactions on Biomedical Engineering.

[103]  Randal C. Nelson,et al.  Detection and Recognition of Periodic, Nonrigid Motion , 1997, International Journal of Computer Vision.

[104]  K. Flegal,et al.  Anthropometric reference data for children and adults: United States, 2003–2006. , 2008, National health statistics reports.

[105]  Ashvin Shah,et al.  A computational model of muscle recruitment for wrist movements. , 2002, Journal of neurophysiology.

[106]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[107]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[108]  J. F. Soechting,et al.  Moving effortlessly in three dimensions: does Donders' law apply to arm movement? , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[109]  Stefan Schaal,et al.  Computational approaches to motor learning by imitation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[110]  David Q. Mayne,et al.  Differential dynamic programming , 1972, The Mathematical Gazette.

[111]  Tieniu Tan,et al.  Recent developments in human motion analysis , 2003, Pattern Recognit..

[112]  R. J. van Beers,et al.  The role of execution noise in movement variability. , 2004, Journal of neurophysiology.

[113]  S. Scott Optimal feedback control and the neural basis of volitional motor control , 2004, Nature Reviews Neuroscience.

[114]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[115]  Henry J. Kelley,et al.  Gradient Theory of Optimal Flight Paths , 1960 .