CO and Dust Properties in the TW Hya Disk from High-resolution ALMA Observations

We analyze high angular resolution ALMA observations of the TW Hya disk to place constraints on the CO and dust properties. We present new, sensitive observations of the 12CO J = 3 − 2 line at a spatial resolution of 8 au (0.″14). The CO emission exhibits a bright inner core, a shoulder at r ≈ 70 au, and a prominent break in slope at r ≈ 90 au. Radiative transfer modeling is used to demonstrate that the emission morphology can be reasonably reproduced with a 12CO column density profile featuring a steep decrease at r ≈ 15 au and a secondary bump peaking at r ≈ 70 au. Similar features have been identified in observations of rarer CO isotopologues, which trace heights closer to the midplane. Substructure in the underlying gas distribution or radially varying CO depletion that affects much of the disk’s vertical extent may explain the shared emission features of the main CO isotopologues. We also combine archival 1.3 mm and 870 μm continuum observations to produce a spectral index map at a spatial resolution of 2 au. The spectral index rises sharply at the continuum emission gaps at radii of 25, 41, and 47 au. This behavior suggests that the grains within the gaps are no larger than a few millimeters. Outside the continuum gaps, the low spectral index values of α ≈ 2 indicate either that grains up to centimeter size are present or that the bright continuum rings are marginally optically thick at millimeter wavelengths.

[1]  E. Dishoeck,et al.  Inferring giant planets from ALMA millimeter continuum and line observations in (transition) disks , 2017, 1710.04418.

[2]  D. Wilner,et al.  A millimeter Continuum Size–Luminosity Relationship for Protoplanetary Disks , 2017, 1706.08977.

[3]  L. Testi,et al.  An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I , 2017, 1706.03320.

[4]  Zhaohuan Zhu,et al.  On the Formation of Multiple Concentric Rings and Gaps in Protoplanetary Disks , 2017, 1706.03066.

[5]  E. Dishoeck,et al.  Different dust and gas radial extents in protoplanetary disks: consistent models of grain growth and CO emission , 2017, 1705.06235.

[6]  E. Bergin,et al.  Mass inventory of the giant-planet formation zone in a solar nebula analogue , 2017, Nature Astronomy.

[7]  Shengtai Li,et al.  Multiple Disk Gaps and Rings Generated by a Single Super-Earth , 2017, 1705.04687.

[8]  R. Murray-Clay,et al.  Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks , 2017, 1704.04693.

[9]  D. Wilner,et al.  H2CO Distribution and Formation in the TW HYA Disk , 2017, 1704.05133.

[10]  L. Ricci,et al.  A Close-up View of the Young Circumbinary Disk HD 142527 , 2017, 1704.00787.

[11]  A. Miotello Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion? , 2017, Proceedings of the International Astronomical Union.

[12]  T. Henning,et al.  A Surface Density Perturbation in the TW Hydrae Disk at 95 au Traced by Molecular Emission , 2017, 1702.02147.

[13]  John H. Debes,et al.  Chasing Shadows: Rotation of the Azimuthal Asymmetry in the TW Hya Disk , 2017, 1701.03152.

[14]  C. Dullemond,et al.  Redistribution of CO at the location of the CO ice line in evolving gas and dust disks , 2017, 1701.02385.

[15]  Ruobing Dong,et al.  What is the Mass of a Gap-Opening Planet? , 2016, 1612.04821.

[16]  L. Testi,et al.  Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA. , 2016, Physical review letters.

[17]  E. Bergin,et al.  EXCESS C/O AND C/H IN OUTER PROTOPLANETARY DISK GAS , 2016, 1610.07859.

[18]  C. Walsh,et al.  Robustness of N2H+ as tracer of the CO snowline , 2016, 1610.06788.

[19]  Julien H. Girard,et al.  Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE , 2016, 1610.08939.

[20]  T. Birnstiel,et al.  Can dead zones create structures like a transition disk , 2016, 1610.02044.

[21]  E. Bergin,et al.  HYDROCARBON EMISSION RINGS IN PROTOPLANETARY DISKS INDUCED BY DUST EVOLUTION , 2016, 1609.06337.

[22]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[23]  L. Testi,et al.  A photoevaporative gap in the closest planet-forming disc , 2016, 1609.03903.

[24]  X. Bai,et al.  Turbulent-diffusion Mediated CO Depletion in Weakly Turbulent Protoplanetary Disks , 2016, 1609.00796.

[25]  Catherine Walsh,et al.  Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter? , 2016, 1607.06710.

[26]  T. Henning,et al.  Measuring turbulence in TW Hydrae with ALMA: methods and limitations , 2016, 1606.00005.

[27]  R. Pudritz,et al.  Composition of early planetary atmospheres – I. Connecting disc astrochemistry to the formation of planetary atmospheres , 2016, 1605.09407.

[28]  J. Carpenter,et al.  ALMA OBSERVATIONS OF CIRCUMSTELLAR DISKS IN THE UPPER SCORPIUS OB ASSOCIATION , 2016, 1605.05772.

[29]  A. Belloche,et al.  Volatile carbon locking and release in protoplanetary disks. A study of TW Hya and HD 100546 , 2016, 1605.05093.

[30]  T. Millar,et al.  FIRST DETECTION OF GAS-PHASE METHANOL IN A PROTOPLANETARY DISK , 2016, 1606.06492.

[31]  S. Ida,et al.  A GAP WITH A DEFICIT OF LARGE GRAINS IN THE PROTOPLANETARY DISK AROUND TW Hya , 2016, 1605.00289.

[32]  Jonathan P. Williams,et al.  ALMA SURVEY OF LUPUS PROTOPLANETARY DISKS. I. DUST AND GAS MASSES , 2016, 1604.05719.

[33]  Luca Ricci,et al.  RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK , 2016, 1603.09352.

[34]  K. Willacy,et al.  PROBING PLANET FORMING ZONES WITH RARE CO ISOTOPOLOGUES , 2016, 1603.08930.

[35]  E. Bergin,et al.  THE RADIAL DISTRIBUTION OF H2 AND CO IN TW HYA AS REVEALED BY RESOLVED ALMA OBSERVATIONS OF CO ISOTOPOLOGUES , 2016, 1603.08520.

[36]  S. Wolf,et al.  Gaps, rings, and non-axisymmetric structures in protoplanetary disks - Emission from large grains , 2016, 1603.05179.

[37]  T. Takeuchi,et al.  Mass constraint for a planet in a protoplanetary disk from the gap width , 2016, 1603.03853.

[38]  E. Bergin,et al.  ON THE COMMONALITY OF 10–30 AU SIZED AXISYMMETRIC DUST STRUCTURES IN PROTOPLANETARY DISKS , 2016, 1601.05182.

[39]  Shengtai Li,et al.  MODELING DUST EMISSION OF HL TAU DISK BASED ON PLANET–DISK INTERACTIONS , 2016, 1601.00358.

[40]  R. Loomis,et al.  N2 AND CO DESORPTION ENERGIES FROM WATER ICE , 2015, 1512.06865.

[41]  L. Cleeves MULTIPLE CARBON MONOXIDE SNOW LINES IN DISKS SCULPTED BY RADIAL DRIFT , 2015, 1512.05836.

[42]  S. Ida,et al.  ALMA OBSERVATIONS OF A GAP AND A RING IN THE PROTOPLANETARY DISK AROUND TW HYA , 2015, 1512.05440.

[43]  Joel H. Kastner,et al.  PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER , 2015, 1512.01865.

[44]  Astrophysics,et al.  Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA , 2015, 1511.07149.

[45]  Masahiko Hayashi,et al.  PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI , 2015, 1511.04822.

[46]  F. Ménard,et al.  Consistent dust and gas models for protoplanetary disks I. Disk shape, dust settling, opacities, and PAHs , 2015, 1511.03431.

[47]  S. Andrews,et al.  DUST EVOLUTION CAN PRODUCE SCATTERED LIGHT GAPS IN PROTOPLANETARY DISKS , 2015, 1510.05660.

[48]  K. Flaherty,et al.  WEAK TURBULENCE IN THE HD 163296 PROTOPLANETARY DISK REVEALED BY ALMA CO OBSERVATIONS , 2015, 1510.01375.

[49]  D. Broguiere,et al.  THE 2014 ALMA LONG BASELINE CAMPAIGN: FIRST RESULTS FROM HIGH ANGULAR RESOLUTION OBSERVATIONS TOWARD THE HL TAU REGION , 2015 .

[50]  P. Duffell A SIMPLE ANALYTICAL MODEL FOR GAPS IN PROTOPLANETARY DISKS , 2015, 1505.03514.

[51]  K. Stassun,et al.  A DISK-BASED DYNAMICAL MASS ESTIMATE FOR THE YOUNG BINARY AK SCO , 2015, 1505.01850.

[52]  V. Wakelam,et al.  Chemistry in Protoplanetary Disks: the gas-phase CO/H2 ratio and the Carbon reservoir , 2015, 1505.01309.

[53]  E. Bergin,et al.  EVIDENCE OF FAST PEBBLE GROWTH NEAR CONDENSATION FRONTS IN THE HL TAU PROTOPLANETARY DISK , 2015, 1505.00882.

[54]  R. University,et al.  Gas density drops inside dust cavities of transitional disks around young stars observed with ALMA , 2015, 1504.03927.

[55]  C. A. Grady,et al.  DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE , 2015, 1503.01856.

[56]  K. Flaherty,et al.  SIGNATURES OF MRI-DRIVEN TURBULENCE IN PROTOPLANETARY DISKS: PREDICTIONS FOR ALMA OBSERVATIONS , 2015, 1501.02808.

[57]  Harvard,et al.  CONSTRAINING THE X-RAY AND COSMIC-RAY IONIZATION CHEMISTRY OF THE TW Hya PROTOPLANETARY DISK: EVIDENCE FOR A SUB-INTERSTELLAR COSMIC-RAY RATE , 2014, 1412.1491.

[58]  Ruobing Dong,et al.  Observational Signatures of Planets in Protoplanetary Disks I: Gaps Opened by Single and Multiple Young Planets in Disks , 2014, 1411.6063.

[59]  T. Henning,et al.  Gaps, Rings, and Non-Axisymmetric Structures in Protoplanetary Disks - From Simulations to ALMA Observations , 2014, 1411.2736.

[60]  E. Dishoeck,et al.  Protoplanetary disk masses from CO isotopologue line emission , 2014, 1410.2093.

[61]  E. Bergin,et al.  Exploring the origins of carbon in terrestrial worlds. , 2014, Faraday discussions.

[62]  F. Ménard,et al.  SPIRAL ARMS IN THE DISK OF HD 142527 FROM CO EMISSION LINES WITH ALMA , 2014, 1403.1463.

[63]  M. Min,et al.  On the structure of the transition disk around TW Hydrae , 2014, 1402.6597.

[64]  Jonathan P. Williams,et al.  A PARAMETRIC MODELING APPROACH TO MEASURING THE GAS MASSES OF CIRCUMSTELLAR DISKS , 2013, 1312.0151.

[65]  S. Andrews,et al.  ON THE OUTER EDGES OF PROTOPLANETARY DUST DISKS , 2013, 1311.5222.

[66]  E. Bergin,et al.  A SIGNIFICANTLY LOW CO ABUNDANCE TOWARD THE TW Hya PROTOPLANETARY DISK: A PATH TO ACTIVE CARBON CHEMISTRY? , 2013, 1309.5370.

[67]  Zhaohuan Zhu,et al.  PARTICLE CONCENTRATION AT PLANET-INDUCED GAP EDGES AND VORTICES. I. INVISCID THREE-DIMENSIONAL HYDRO DISKS , 2013, 1308.0648.

[68]  E. Bergin,et al.  Imaging of the CO Snow Line in a Solar Nebula Analog , 2013, Science.

[69]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[70]  D. Wilner,et al.  A SPATIALLY RESOLVED VERTICAL TEMPERATURE GRADIENT IN THE HD 163296 DISK , 2013, 1306.6475.

[71]  A. J. Weinberger,et al.  THE 0.5–2.22 μm SCATTERED LIGHT SPECTRUM OF THE DISK AROUND TW Hya: DETECTION OF A PARTIALLY FILLED DISK GAP AT 80 AU , 2013, 1306.2969.

[72]  Hannah Jang-Condell,et al.  GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS , 2013, 1305.6313.

[73]  Zhaohuan Zhu,et al.  LOW-MASS PLANETS IN PROTOPLANETARY DISKS WITH NET VERTICAL MAGNETIC FIELDS: THE PLANETARY WAKE AND GAP OPENING , 2013, 1302.3239.

[74]  P. Duffell,et al.  GAP OPENING BY EXTREMELY LOW-MASS PLANETS IN A VISCOUS DISK , 2013, 1302.1934.

[75]  T. Henning,et al.  An old disk still capable of forming a planetary system , 2013, Nature.

[76]  A. Boss,et al.  DISTANCE AND KINEMATICS OF THE TW HYDRAE ASSOCIATION FROM PARALLAXES , 2012, 1211.2233.

[77]  L. Mundy,et al.  CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK , 2012, 1210.5252.

[78]  C. Dullemond,et al.  KINEMATICS OF THE CO GAS IN THE INNER REGIONS OF THE TW Hya DISK , 2012, 1208.1285.

[79]  M. Benisty,et al.  Ring shaped dust accumulation in transition disks , 2012, 1207.6485.

[80]  Catherine Espaillat,et al.  DUST FILTRATION BY PLANET-INDUCED GAP EDGES: IMPLICATIONS FOR TRANSITIONAL DISKS , 2012, 1205.5042.

[81]  Hannah Jang-Condell,et al.  GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. I. METHODOLOGY AND VALIDATION , 2012, 1202.3465.

[82]  L. Testi,et al.  The effect of local optically thick regions in the long-wave emission of young circumstellar disks , 2012, 1202.1802.

[83]  Rahul Shetty,et al.  RADMC-3D: A multi-purpose radiative transfer tool , 2012 .

[84]  G. Herczeg,et al.  The warm gas atmosphere of the HD 100546 disk seen by Herschel - Evidence of a gas-rich, carbon-poor atmosphere? , 2012, 1201.4860.

[85]  L. Testi,et al.  Trapping dust particles in the outer regions of protoplanetary disks , 2011, 1112.2349.

[86]  Jonathan P. Williams,et al.  THE TW Hya DISK AT 870 μm: COMPARISON OF CO AND DUST RADIAL STRUCTURES , 2011, 1111.5037.

[87]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[88]  T. Cornwell,et al.  A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry , 2011, 1106.2745.

[89]  A. Dutrey,et al.  A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial variations of the dust properties , 2011 .

[90]  D. Wilner,et al.  EMPIRICAL CONSTRAINTS ON TURBULENCE IN PROTOPLANETARY ACCRETION DISKS , 2010, 1011.3826.

[91]  C. Dullemond,et al.  Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks , 2010, 1006.0940.

[92]  L. Fouchet,et al.  Planet gaps in the dust layer of 3D protoplanetary disks - I. Hydrodynamical simulations of T Tauri disks , 2010, 1005.4557.

[93]  R. Neri,et al.  Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths , 2009, 0912.3356.

[94]  E. Dishoeck,et al.  The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks , 2009, 0906.3699.

[95]  Sean M. Andrews,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS , 2009, 0906.0730.

[96]  I. Kamp,et al.  Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim , 2009, 0904.0334.

[97]  Tim J. Cornwell,et al.  Multiscale CLEAN Deconvolution of Radio Synthesis Images , 2008, IEEE Journal of Selected Topics in Signal Processing.

[98]  G. Blake,et al.  Resolving the Chemistry in the Disk of TW Hydrae. I. Deuterated Species , 2008, 0803.2753.

[99]  T. Henning,et al.  Chemistry in Protoplanetary Disks: A Sensitivity Analysis , 2007, 0709.3323.

[100]  T. Henning,et al.  Molecular Line Radiative Transfer in Protoplanetary Disks: Monte Carlo Simulations versus Approximate Methods , 2007, 0707.2905.

[101]  G. Lodato,et al.  Dust filtration at gap edges: Implications for the spectral energy distributions of discs with embedded planets , 2006, astro-ph/0609808.

[102]  M. Sterzik,et al.  Search for associations containing young stars (SACY). I. Sample and searching method , 2006, astro-ph/0609258.

[103]  G. Mellema,et al.  Dust flow in gas disks in the presence of embedded planets , 2006, astro-ph/0603132.

[104]  A. Dutrey,et al.  Deuterated molecules in DM Tauri: DCO$^+$, but no HDO , 2006, astro-ph/0602396.

[105]  L. A. Hillenbrand,et al.  Spatially Resolving the Inner Disk of TW Hydrae , 2006, astro-ph/0601034.

[106]  L. Hartmann,et al.  Toward Planetesimals in the Disk around TW Hydrae: 3.5 Centimeter Dust Emission , 2005, astro-ph/0506644.

[107]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[108]  A. Weinberger,et al.  Spatially Resolved Spectroscopy and Coronagraphic Imaging of the TW Hydrae Circumstellar Disk , 2004, astro-ph/0410251.

[109]  J. Cuzzi,et al.  Material Enhancement in Protoplanetary Nebulae by Particle Drift through Evaporation Fronts , 2004, astro-ph/0409276.

[110]  Qizhou Zhang,et al.  Imaging the Disk around TW Hydrae with the Submillimeter Array , 2004, astro-ph/0403412.

[111]  E. Dartois,et al.  Structure of the DM Tau Outer Disk: Probing the vertical kinetic temperature gradient , 2003 .

[112]  M. Collings,et al.  Carbon Monoxide Entrapment in Interstellar Ice Analogs , 2003 .

[113]  G. V. Zadelhoff,et al.  Detection of DCO+ in a circumstellar disk , 2003, astro-ph/0301571.

[114]  A. Walsh,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002, astro-ph/0201425.

[115]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[116]  T. Wilson Isotopes in the interstellar medium and circumstellar envelopes , 1999 .

[117]  M. Schwartz,et al.  Discovery of Seven T Tauri Stars and a Brown Dwarf Candidatein the Nearby TW Hydrae Association , 1998, astro-ph/9812189.

[118]  T. Forveille,et al.  X-ray and molecular emission from the nearest region of recent star formation. , 1997, Science.

[119]  S. Miyama,et al.  Evolution of Molecular Abundance in Protoplanetary Disks , 1997, astro-ph/9706204.

[120]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[121]  S. Sandford,et al.  The condensation and vaporization behavior of H2O:CO ices and implications for interstellar grains and cometary activity , 1988 .

[122]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[123]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[124]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[125]  Eric Herbst,et al.  The formation and depletion of molecules in dense interstellar clouds , 1973 .

[126]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[127]  B. Draine submitted to The Astrophysical Journal On the Submillimeter Opacity of Protoplanetary Disks , 2005 .