Improved Electrochemical Performance of Spherical Li2FeSiO4/C Cathode Materials via Mn Doping for Lithium-Ion Batteries

[1]  B. Han,et al.  Effects of samarium doping on the electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries , 2016 .

[2]  Tong Zhang,et al.  Enhanced Electrochemical Performance of Li2FeSiO4/C Positive Electrodes for Lithium-Ion Batteries via Yttrium Doping , 2016 .

[3]  F. Pan,et al.  Tuning structural stability and lithium-storage properties by d-orbital hybridization substitution in full tetrahedron Li2FeSiO4 nanocrystal , 2016 .

[4]  Y. Oaki,et al.  Six-armed twin crystals composed of lithium iron silicate nanoplates and their electrochemical properties , 2015 .

[5]  Q. Fu,et al.  Improved Cycle Stability and Rate Capability of Graphene Oxide Wrapped Tavorite LiFeSO₄F as Cathode Material for Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[6]  Feng Wu,et al.  Template-Assisted Hydrothermal Synthesis of Li₂MnSiO₄ as a Cathode Material for Lithium Ion Batteries. , 2015, ACS applied materials & interfaces.

[7]  T. Masese,et al.  Crystal Structural Changes and Charge Compensation Mechanism during Two Lithium Extraction/Insertion between Li2FeSiO4 and FeSiO4 , 2015 .

[8]  Hongyuan Zhao,et al.  Graphene modified Li2FeSiO4/C composite as a high performance cathode material for lithium-ion batteries , 2015, Journal of Solid State Electrochemistry.

[9]  Haimei Liu,et al.  Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries , 2014 .

[10]  Jian Yang,et al.  Hierarchical mesoporous Li2Mn0.5Fe0.5SiO4 and Li2Mn0.5Fe0.5SiO4/C assembled by nanoparticles or nanoplates as a cathode material for lithium-ion batteries , 2014 .

[11]  De-cheng Li,et al.  High-Rate Capability of Lithium-Rich Layered Li1.2Ni0.18Mn0.59Co0.03O2 Cathode Material Prepared from Size-Regulated Precursor Fine Particles , 2014 .

[12]  Yunhui Huang,et al.  Systematic investigation on Cadmium-incorporation in Li2FeSiO4/C cathode material for lithium-ion batteries , 2014, Scientific Reports.

[13]  Weidong Zhou,et al.  Mn-doped TiO2 nanosheet-based spheres as anode materials for lithium-ion batteries with high performance at elevated temperatures. , 2014, ACS applied materials & interfaces.

[14]  Ningning Wu,et al.  Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes , 2014 .

[15]  S. Mitra,et al.  Improved electrochemical activity of nanostructured Li2FeSiO4/MWCNTs composite cathode , 2014 .

[16]  K. Gao Effect of Mn doping on electrochemical properties of Li2FeSiO4/C cathode materials based on a vacuum solid-state method , 2014, Ionics.

[17]  Yunhui Huang,et al.  Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries. , 2013, ACS applied materials & interfaces.

[18]  Jinlong Yang,et al.  Hierarchical shuttle-like Li2FeSiO4 as a highly efficient cathode material for lithium-ion batteries , 2013 .

[19]  Jinlong Yang,et al.  Synthesis and electrochemical performance of Li2FeSiO4/C/carbon nanosphere composite cathode materials for lithium ion batteries , 2013 .

[20]  Yong Yang,et al.  Understanding the High Capacity of Li2FeSiO4: In Situ XRD/XANES Study Combined with First-Principles Calculations , 2013 .

[21]  Jeom-Soo Kim,et al.  Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage , 2013 .

[22]  P. Mustarelli,et al.  Insight into cation disorder of Li2Fe0.5Mn0.5SiO4 , 2013 .

[23]  B. Shao,et al.  Synthesis and electrochemical characterization of Li2FexMn1 − xSiO4/C (0 ≦ x ≦ 0.8) nanocomposite cathode for lithium-ion batteries , 2013 .

[24]  Sylvio Indris,et al.  Structural Evolution of Li2Fe1-yMnySiO4 (y = 0, 0.2, 0.5, 1) Cathode Materials for Li-Ion Batteries upon Electrochemical Cycling , 2013 .

[25]  Weihua Chen,et al.  Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries , 2013 .

[26]  M. Winter,et al.  Aging of Li2FeSiO4 cathode material in fluorine containing organic electrolytes for lithium-ion batteries , 2012 .

[27]  Jiali Liu,et al.  Synthesis, characterization and electrochemical performance of Li2FeSiO4/C cathode materials doped by vanadium at Fe/Si sites for lithium ion batteries , 2012 .

[28]  Yong Yang,et al.  Nanostructured 0.8Li2FeSiO4/0.4Li2SiO3/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries , 2012 .

[29]  P. Bruce,et al.  Insights into Changes in Voltage and Structure of Li2FeSiO4 Polymorphs for Lithium-Ion Batteries , 2012 .

[30]  程璇,et al.  Achieving High Capacity by Vanadium Substitution into Li2FeSiO4 for Li-Ion Battery , 2012 .

[31]  Hongyu Chen,et al.  Hydrothermal synthesis and properties of manganese-doped LiFePO4 , 2012, Ionics.

[32]  Itaru Honma,et al.  Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. , 2012, Nano letters.

[33]  B. Shao,et al.  Synthesis of Li2FeSiO4/C nanocomposite cathodes for lithium batteries by a novel synthesis route and their electrochemical properties , 2012 .

[34]  Shu Cai,et al.  Synthesis and characterization of in situ carbon-coated Li2FeSiO4 cathode materials for lithium ion battery , 2012 .

[35]  Jun Chen,et al.  Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries , 2012 .

[36]  Shu Cai,et al.  Sol-Gel Synthesis of Nanostructured Li2FeSiO4/C as Cathode Material for Lithium Ion Battery , 2012 .

[37]  Yong Yang,et al.  Recent advances in the research of polyanion-type cathode materials for Li-ion batteries , 2011 .

[38]  P. Bruce,et al.  Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. , 2011, Journal of the American Chemical Society.

[39]  Yong Yang,et al.  A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity , 2011 .

[40]  T. Gustafsson,et al.  Synthesis and electrochemical properties of nanostructured Li2FeSiO4/C cathode material for Li-ion batteries , 2011 .

[41]  Songtao Zhang,et al.  Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M = Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries , 2011 .

[42]  Songtao Zhang,et al.  Effects of Cr doping on the electrochemical properties of Li2FeSiO4 cathode material for lithium-ion batteries , 2010 .

[43]  Zhixing Wang,et al.  Optimum synthesis of Li2Fe1−xMnxSiO4/C cathode for lithium ion batteries , 2010 .

[44]  Xing Li,et al.  Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery , 2010 .

[45]  Arumugam Manthiram,et al.  Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries , 2010 .

[46]  C. Deng,et al.  Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries , 2010 .

[47]  Ling Huang,et al.  Synthesis and electrochemical performance of porous Li2FeSiO4/C cathode material for long-life lithium-ion batteries , 2010 .

[48]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[49]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[50]  R. Ahuja,et al.  Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations , 2010 .

[51]  C. Deng,et al.  Effect of Mn substitution on the structural, morphological and electrochemical behaviors of Li2Fe1−xMnxSiO4 synthesized via citric acid assisted sol–gel method , 2009 .

[52]  Sen Zhang,et al.  Preparation of Nano- Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries , 2009 .

[53]  D. Schüler,et al.  Synthesis and Characterization , 2009 .

[54]  Robert Dominko,et al.  Li2MSiO4 (M = Fe and/or Mn) cathode materials , 2008 .

[55]  Yong Yang,et al.  Nanostructured Li2FeSiO4 Electrode Material Synthesized through Hydrothermal-Assisted Sol-Gel Process , 2008 .

[56]  Robert Dominko,et al.  Impact of synthesis conditions on the structure and performance of Li2FeSiO4 , 2008 .

[57]  P. Adelhelm,et al.  Generation of Hierarchical Meso‐ and Macroporous Carbon from Mesophase Pitch by Spinodal Decomposition using Polymer Templates , 2007 .

[58]  Robert Dominko,et al.  Beyond One-Electron Reaction in Li Cathode Materials: Designing Li2MnxFe1-xSiO4 , 2007 .

[59]  M. Armand,et al.  Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS , 2006 .

[60]  Jean-Marie Tarascon,et al.  On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) , 2006 .

[61]  Torbjörn Gustafsson,et al.  The lithium extraction/insertion mechanism in Li2FeSiO4 , 2006 .

[62]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[63]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[64]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .