Universes of fuzzy sets-a short survey
暂无分享,去创建一个
[1] F W Lawvere,et al. AN ELEMENTARY THEORY OF THE CATEGORY OF SETS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[2] Dieter Klaua,et al. Ein Ansatz zur mehrwertigen Mengenlehre , 1967 .
[3] J. Goguen. L-fuzzy sets , 1967 .
[4] Joseph A. Goguen,et al. Concept Representation in Natural and Artificial Languages: Axioms, Extensions and Applications for Fuzzy Sets , 1974, Int. J. Man Mach. Stud..
[5] Siegfried Gottwald,et al. A cumulative system of fuzzy sets , 1976 .
[6] John L. Bell,et al. Boolean-valued models and independence proofs in set theory , 1977 .
[7] D. Scott. Identity and existence in intuitionistic logic , 1979 .
[8] S. Gottwald. Set theory for fuzzy sets of higher level , 1979 .
[9] D. Scott,et al. Sheaves and logic , 1979 .
[10] Zhang Jinwen,et al. A unified treatment of fuzzy set theory and Boolean-valued set theory—Fuzzy set structures and normal fuzzy set structures , 1980 .
[11] Siegfried Gottwald,et al. Fuzzy uniqueness of fuzzy mappings , 1980 .
[12] M. Eytan,et al. Fuzzy sets: A topos-logical point of view , 1981 .
[13] Zhang Jinwen,et al. Fuzzy Set Structure with Strong Implication , 1983 .
[14] Satoko Titani,et al. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.
[15] Aleš Pultr,et al. Fuzziness and Fuzzy Equality , 1984 .
[16] L. N. Stout,et al. Foundations of fuzzy sets , 1991 .
[17] U. Höhle,et al. Classification of Extremal Subobjects of Algebras Over SM-SET , 1992 .
[18] U. Höhle. M-valued Sets and Sheaves over Integral Commutative CL-Monoids , 1992 .
[19] Satoko Titani,et al. Fuzzy logic and fuzzy set theory , 1992, Arch. Math. Log..
[20] U. Höhle. Presheaves over GL-monoids , 1995 .
[21] Oswald Wyler,et al. Fuzzy logic and categories of fuzzy sets , 1995 .
[22] U. Höhle. Commutative, residuated 1—monoids , 1995 .
[23] Satoko Titani. Completeness of Global Intuitionistic Set Theory , 1997, J. Symb. Log..
[24] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[25] Vilém Novák,et al. Topoi and Categories of Fuzzy Sets , 1999 .
[26] Satoko Titani. A lattice-valued set theory , 1999, Arch. Math. Log..
[27] Petr Hájek,et al. A set theory within fuzzy logic , 2001, Proceedings 31st IEEE International Symposium on Multiple-Valued Logic.
[28] S. Gottwald. A Treatise on Many-Valued Logics , 2001 .