Universes of fuzzy sets-a short survey

For classical sets one has their cumulative hierarchy, and also the category SET of all sets and mappings as standard approaches toward the universe of all sets. We discuss the corresponding situation for fuzzy set theory and give is a (concise) survey of a lot of such approaches which have been offered in the past approximately 35 years.

[1]  F W Lawvere,et al.  AN ELEMENTARY THEORY OF THE CATEGORY OF SETS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Dieter Klaua,et al.  Ein Ansatz zur mehrwertigen Mengenlehre , 1967 .

[3]  J. Goguen L-fuzzy sets , 1967 .

[4]  Joseph A. Goguen,et al.  Concept Representation in Natural and Artificial Languages: Axioms, Extensions and Applications for Fuzzy Sets , 1974, Int. J. Man Mach. Stud..

[5]  Siegfried Gottwald,et al.  A cumulative system of fuzzy sets , 1976 .

[6]  John L. Bell,et al.  Boolean-valued models and independence proofs in set theory , 1977 .

[7]  D. Scott Identity and existence in intuitionistic logic , 1979 .

[8]  S. Gottwald Set theory for fuzzy sets of higher level , 1979 .

[9]  D. Scott,et al.  Sheaves and logic , 1979 .

[10]  Zhang Jinwen,et al.  A unified treatment of fuzzy set theory and Boolean-valued set theory—Fuzzy set structures and normal fuzzy set structures , 1980 .

[11]  Siegfried Gottwald,et al.  Fuzzy uniqueness of fuzzy mappings , 1980 .

[12]  M. Eytan,et al.  Fuzzy sets: A topos-logical point of view , 1981 .

[13]  Zhang Jinwen,et al.  Fuzzy Set Structure with Strong Implication , 1983 .

[14]  Satoko Titani,et al.  Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.

[15]  Aleš Pultr,et al.  Fuzziness and Fuzzy Equality , 1984 .

[16]  L. N. Stout,et al.  Foundations of fuzzy sets , 1991 .

[17]  U. Höhle,et al.  Classification of Extremal Subobjects of Algebras Over SM-SET , 1992 .

[18]  U. Höhle M-valued Sets and Sheaves over Integral Commutative CL-Monoids , 1992 .

[19]  Satoko Titani,et al.  Fuzzy logic and fuzzy set theory , 1992, Arch. Math. Log..

[20]  U. Höhle Presheaves over GL-monoids , 1995 .

[21]  Oswald Wyler,et al.  Fuzzy logic and categories of fuzzy sets , 1995 .

[22]  U. Höhle Commutative, residuated 1—monoids , 1995 .

[23]  Satoko Titani Completeness of Global Intuitionistic Set Theory , 1997, J. Symb. Log..

[24]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[25]  Vilém Novák,et al.  Topoi and Categories of Fuzzy Sets , 1999 .

[26]  Satoko Titani A lattice-valued set theory , 1999, Arch. Math. Log..

[27]  Petr Hájek,et al.  A set theory within fuzzy logic , 2001, Proceedings 31st IEEE International Symposium on Multiple-Valued Logic.

[28]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .