Isobaric molar heat capacity model for the improved Tietz potential

In this study, the improved Tietz potential was used to describe the internal vibration of a diatomic molecule. With the help of the expression for bound state energy levels, a more generalized equation for the upper bound vibrational quantum number and canonical partition function were obtained for the diatomic system. The obtained partition function was used to derive analytical equation for the prediction of constant pressure (isobaric) molar heat capacity of diatomic molecules. The analytical model was used to predict the constant pressure molar heat capacity data of the ground state CO, BBr, HBr, HI, P2, KBr, Br2, PBr, SiO and Cl2 molecules. The upper bound vibrational quantum number obtained for the molecules are 85, 100, 21, 21, 115, 301, 89, 157, 110 and 67. The computed average absolute deviation are 2.3462%, 1.1342%, 2.3350%, 1.9078%, 0.7268%, 2.4041%, 1.7849%, 1.8989%, 2.5209% and 2.1523%. The present results are in good agreement with available literature data on gaseous molecules.

[1]  E. Eyube,et al.  Entropy and Gibbs free energy equations for the specialized Pöschl–Teller potential , 2022, The European Physical Journal Plus.

[2]  Xiaolong Peng,et al.  Prediction of thermodynamic properties for sulfur dimer , 2022, Chemical Physics Letters.

[3]  Jian-Yi Liu,et al.  A Novel Formulation Representation of the Equilibrium Constant for Water Gas Shift Reaction , 2022, SSRN Electronic Journal.

[4]  O. O. Ekerenam,et al.  Analyzing the effects of magnetic and Aharonov‐Bohm ( AB ) flux fields on the energy spectra and thermal properties of N 2 , , 2022, International Journal of Quantum Chemistry.

[5]  E. S. Eyube Prediction of thermal properties of phosphorus dimer – the analytical approach , 2022, Chemical Physics Letters.

[6]  C. Onate,et al.  Theoretical prediction of Gibbs free energy and specific heat capacity of gaseous molecules , 2022, Chemical Physics.

[7]  E. S. Eyube,et al.  Analytical prediction of enthalpy and Gibbs free energy of gaseous molecules , 2022, Chemical Thermodynamics and Thermal Analysis.

[8]  M. Onyeaju,et al.  Aharonov–Bohm (AB) flux and thermomagnetic properties of Hellmann plus screened Kratzer potential as applied to diatomic molecules using Nikiforov–Uvarov-Functional-Analysis (NUFA) method , 2022, Molecular Physics.

[9]  E. S. Eyube Reparametrised Pöschl–Teller oscillator and analytical molar entropy equation for diatomic molecules , 2022, Molecular Physics.

[10]  E. S. Eyube,et al.  Model Entropy Equation for Gaseous Substances , 2022, International Journal of Thermophysics.

[11]  Xiaolong Peng,et al.  Prediction of thermodynamic properties for sulfur dioxide , 2022, Journal of Molecular Liquids.

[12]  G. G. Nyam,et al.  Improved q-deformed Scarf II oscillator , 2021, Physica Scripta.

[13]  Jia Fu,et al.  A method for predicting the molar heat capacities of HBr and HCl gases based on the full set of molecular rovibrational energies. , 2021, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[14]  M. Izam,et al.  Potential parameters and eigen spectra of improved Scarf II potential energy function for diatomic molecules , 2021, Molecular Physics.

[15]  M. Ballester,et al.  A comparative review of 50 analytical representation of potential energy interaction for diatomic systems: 100 years of history , 2021, International Journal of Quantum Chemistry.

[16]  A. Ghanbari,et al.  Theoretical Prediction of Thermal Properties of K2 Diatomic Molecule Using Generalized Mobius Square Potential , 2021, International Journal of Thermophysics.

[17]  A. Ghanbari,et al.  Thermodynamic properties of several substances using Tietz–Hua potential , 2021, Indian Journal of Physics.

[18]  R. Horchani,et al.  A Straightforward Model for Molar Enthalpy Prediction of CsO, CsF, and CsCl Molecules Via Shifted Tietz-Wei Potential , 2021, International Journal of Thermophysics.

[19]  E. Song,et al.  Combustion Model of a Dual‐Fuel Diesel Engine , 2021 .

[20]  L. Wondraczek,et al.  Thermal strengthening of low‐expansion glasses and thin‐walled glass products by ultra‐fast heat extraction , 2021, Journal of the American Ceramic Society.

[21]  O. E. Osafile,et al.  Energy Spectrum and the properties of the Schiöberg potential using the WKB approximation approach , 2020 .

[22]  R. Horchani,et al.  A four-parameters model for molar entropy calculation of diatomic molecules via shifted Tietz-Wei potential , 2020, Chemical Physics Letters.

[23]  Chun-Sheng Jia,et al.  Predictions of thermodynamic properties for hydrogen sulfide , 2020 .

[24]  A. Ghanbari,et al.  Theoretical prediction of thermodynamic properties of N2 and CO using pseudo harmonic and Mie-type potentials , 2020 .

[25]  M. J. Sithole,et al.  Superstatistics of Schrödinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields , 2020, Heliyon.

[26]  A. Ghanbari,et al.  Accurate Prediction of Thermodynamic Functions of H2 and LiH Using Theoretical Calculations , 2020, International Journal of Thermophysics.

[27]  A. Ghanbari,et al.  Theoretical Prediction of Thermodynamic Functions of TiC: Morse Ring-Shaped Potential , 2020 .

[28]  Chun-Sheng Jia,et al.  Efficient predictions of Gibbs free energy for the gases CO, BF, and gaseous BBr , 2020 .

[29]  Mikael Olsson Struct , 2019, C# 8 Quick Syntax Reference.

[30]  G. Rampho,et al.  Thermodynamic properties of Aharanov–Bohm (AB) and magnetic fields with screened Kratzer potential , 2019, The European Physical Journal D.

[31]  Jun Wang,et al.  Thermodynamic Properties for Carbon Dioxide , 2019, ACS omega.

[32]  Chun-Sheng Jia,et al.  Prediction of entropy and Gibbs free energy for nitrogen , 2019, Chemical Engineering Science.

[33]  A. Ghanbari,et al.  Analytical calculations of thermodynamic functions of lithium dimer using modified Tietz and Badawi-Bessis-Bessis potentials , 2019, Computational and Theoretical Chemistry.

[34]  A. Avazpour,et al.  Exact analytical calculations of thermodynamic functions of gaseous substances , 2019, Chemical Physics.

[35]  M. Korek,et al.  Electronic structure with the calculation of the rovibrational, and dipole moments of the electronic states of the NaBr and KBr molecules , 2019, Chemical Physics.

[36]  S. Abdeslam,et al.  Molecular dynamics study of size and cooling rate effects on physical properties of Niobium nanoclusters , 2018, Chinese Journal of Physics.

[37]  Xiaolong Peng,et al.  Entropy of gaseous phosphorus dimer , 2018, Chemical Engineering Science.

[38]  Chun-Sheng Jia,et al.  Prediction of enthalpy for nitrogen gas , 2018, The European Physical Journal Plus.

[39]  Xiaolong Peng,et al.  Enthalpy of gaseous phosphorus dimer , 2018, Chemical Engineering Science.

[40]  Xiaolong Peng,et al.  Predictions of entropy for diatomic molecules and gaseous substances , 2018 .

[41]  Xiaolong Peng,et al.  Entropy of gaseous boron monobromide , 2017 .

[42]  P. McIntyre,et al.  Low temperature, high pressure thermo-physical and crystallographic properties of KZnF3 perovskite , 2017 .

[43]  Xiaolong Peng,et al.  Partition function of improved Tietz oscillators , 2017 .

[44]  Jian-yi Liu,et al.  Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. , 2012, The Journal of chemical physics.

[45]  Wentao Li,et al.  MRCI study on the spectroscopic parameters and molecular constants of the X1Σ+, a3Σ+, A1Π and C1Σ- electronic states of the SiO molecule. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[46]  P. Hajigeorgiou An extended Lennard-Jones potential energy function for diatomic molecules: Application to ground electronic states , 2010 .

[47]  Deheng Shi,et al.  Spectroscopic investigations on HBr(X1Σ+) molecule using MRCI method in combination with correlation-consistent quintuple basis set augmented with diffuse functions , 2009 .

[48]  A. D. Alhaidari,et al.  The rotating Morse potential model for diatomic molecules in the tridiagonal J-matrix representation: I. Bound states , 2007, 0706.2371.

[49]  M. L. Strekalov An accurate closed-form expression for the partition function of Morse oscillators , 2007 .

[50]  P. Bernath,et al.  Characterization of the Ground State of Br2 by Laser-Induced Fluorescence Fourier Transform Spectroscopy of the B3Π0+u–X1Σ+g System , 2000 .

[51]  Fan,et al.  Infrared Diode Laser Spectroscopy of Fundamental and Hot Bands of BBr (X1Sigma+). , 1998, Journal of molecular spectroscopy.

[52]  J. Kunc,et al.  Rotational−Vibrational Levels of Diatomic Molecules Represented by the Tietz−Hua Rotating Oscillator , 1997 .

[53]  Yuxiang Bu Theoretical Inner-Sphere Reorganization Energies of Gaseous Diatomic Molecules from Vibrational Spectroscopic Data , 1995 .

[54]  D. Schiöberg The energy eigenvalues of hyperbolical potential functions , 1986 .

[55]  R. Colin The blΣ+–X3Σ− band system of the PBr molecule , 1979 .

[56]  A. Douglas,et al.  The Resonance Fluorescence Spectrum of Cl 2 in the Vacuum Ultraviolet , 1975 .

[57]  T. Tietz Potential‐Energy Function for Diatomic Molecules , 1963 .

[58]  Jun Wang,et al.  Prediction of the ideal-gas thermodynamic properties for water , 2021 .

[59]  Meng Y. Wang,et al.  Improved Five-Parameter Exponential-Type Potential Energy Model for Diatomic Molecules , 2019, Communications in Theoretical Physics.

[60]  Xiaolong Peng,et al.  Prediction of enthalpy for the gases CO, HCl, and BF , 2019, Chemical Physics Letters.