Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple.

We present a production implementation of reduced-scaling explicitly correlated (F12) coupled-cluster singles and doubles (CCSD) method based on pair-natural orbitals (PNOs). A key feature is the reformulation of the explicitly correlated terms using geminal-spanning orbitals that greatly reduce the truncation errors of the F12 contribution. For the standard S66 benchmark of weak intermolecular interactions, the cc-pVDZ-F12 PNO CCSD F12 interaction energies reproduce the complete basis set CCSD limit with mean absolute error <0.1 kcal/mol, and at a greatly reduced cost compared to the conventional CCSD F12.

[1]  Edward F. Valeev,et al.  Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment. , 2012, Journal of chemical theory and computation.

[2]  C. Hättig,et al.  A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies. , 2013, The Journal of chemical physics.

[3]  Hans-Joachim Werner,et al.  Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. , 2008, The Journal of chemical physics.

[4]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[5]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[6]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[7]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[8]  Wilfried Meyer,et al.  PNO-CI and CEPA studies of electron correlation effects , 1974 .

[9]  Frederick R Manby,et al.  The orbital-specific-virtual local coupled cluster singles and doubles method. , 2012, The Journal of chemical physics.

[10]  Hans-Joachim Werner,et al.  Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals. , 2012, Physical chemistry chemical physics : PCCP.

[11]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[12]  Wilfried Meyer,et al.  PNO–CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane , 1973 .

[13]  Dimitrios G Liakos,et al.  Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. , 2009, The Journal of chemical physics.

[14]  Seiichiro Ten-no,et al.  Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. , 2004, The Journal of chemical physics.

[15]  F. Neese,et al.  Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. , 2009, The Journal of chemical physics.

[16]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[17]  Frank Neese,et al.  Natural triple excitations in local coupled cluster calculations with pair natural orbitals. , 2013, The Journal of chemical physics.

[18]  Hans-Joachim Werner,et al.  Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[19]  Edward F. Valeev,et al.  Explicitly correlated R12/F12 methods for electronic structure. , 2012, Chemical reviews.

[20]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[21]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[22]  Kirk A Peterson,et al.  Optimized auxiliary basis sets for explicitly correlated methods. , 2008, The Journal of chemical physics.

[23]  Christof Hättig,et al.  Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals. , 2011, The Journal of chemical physics.

[24]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[25]  Edward F. Valeev,et al.  Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: application to H2O, N2H+, NO2+, and C2H2. , 2010, The Journal of chemical physics.

[26]  D. Tew,et al.  Pair natural orbitals in explicitly correlated second-order moller-plesset theory , 2013 .

[27]  Frank Neese,et al.  The ORCA program system , 2012 .

[28]  Edward F. Valeev Improving on the resolution of the identity in linear R12 ab initio theories , 2004 .

[29]  Frederick R Manby,et al.  Tensor factorizations of local second-order Møller-Plesset theory. , 2010, The Journal of chemical physics.

[30]  D. Tew,et al.  Communications: Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12. , 2010, The Journal of chemical physics.

[31]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[32]  Christof Hättig,et al.  Explicitly correlated electrons in molecules. , 2012, Chemical reviews.

[33]  J. Noga,et al.  Alternative formulation of the matrix elements in MP2‐R12 theory , 2005 .

[34]  Frank Neese,et al.  An efficient and near linear scaling pair natural orbital based local coupled cluster method. , 2013, The Journal of chemical physics.

[35]  Edward F. Valeev,et al.  Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation. , 2004, The Journal of chemical physics.

[36]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[37]  Edward F. Valeev,et al.  Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation. , 2008, Physical chemistry chemical physics : PCCP.

[38]  Pavel Hobza,et al.  S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.

[39]  Werner Kutzelnigg,et al.  Quantum chemistry in Fock space. I. The universal wave and energy operators , 1982 .

[40]  Hans-Joachim Werner,et al.  An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit. , 2011, The Journal of chemical physics.

[41]  M. Krauss,et al.  Pseudonatural Orbitals as a Basis for the Superposition of Configurations. I. He2 , 1966 .

[42]  Frederick R. Manby,et al.  R12 methods in explicitly correlated molecular electronic structure theory , 2006 .

[43]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.