A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing

We show that no unbounded profit with bounded risk (NUPBR) implies predictable uniform tightness (P-UT), a boundedness property in the Emery topology introduced by Stricker (Séminaire de Probabilités de Strasbourg XIX, pp. 209–217, 1985). Combining this insight with well-known results of Mémin and Słominski (Séminaire de Probabilités de Strasbourg XXV, pp. 162–177, 1991) leads to a short variant of the proof of the fundamental theorem of asset pricing initially proved by Delbaen and Schachermayer (Math. Ann. 300:463–520, 1994). The results are formulated in the general setting of admissible portfolio wealth processes as laid down by Kabanov (Statistics and Control of Stochastic Processes, pp. 191–203, World Sci. Publ., River Edge, 1997).

[1]  P. Protter,et al.  Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations , 1991 .

[2]  C. Kardaras GENERALIZED SUPERMARTINGALE DEFLATORS UNDER LIMITED INFORMATION , 2009, 0904.2913.

[3]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[4]  Constantinos Kardaras,et al.  The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.

[5]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[6]  C. Kardaras On the closure in the Emery topology of semimartingale wealth-process sets. , 2011, 1108.0945.

[7]  Yan Jia-An,et al.  Caractérisation d’une classe d’ensembles convexes de $L^1$ ou $H^1$ , 1980 .

[8]  Freddy Delbaen,et al.  REPRESENTING MARTINGALE MEASURES WHEN ASSET PRICES ARE CONTINUOUS AND BOUNDED , 1992 .

[9]  W. Schachermayer MARTINGALE MEASURES FOR DISCRETE‐TIME PROCESSES WITH INFINITE HORIZON , 1994 .

[10]  О существовании эквивалентной супермартингальной плотности для разветвленно-выпуклого семейства случайных процессов@@@On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes , 2010 .

[11]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[12]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[13]  Marco Ferrante,et al.  Finite dimensional filters for a discrete-time nonlinear system with generalized gaussian white noise. , 1995 .

[14]  D. B. Rokhlin,et al.  On the existence of an equivalent supermartingale density for a fork-convex family of stochastic processes , 2010 .

[15]  I. Karatzas,et al.  Stochastic Portfolio Theory: an Overview , 2009 .

[16]  J. Jacod Convergence en loi de semimartingales et variation quadratique , 1981 .

[17]  Walter Schachermayer,et al.  The Mathematics of Arbitrage , 2006 .

[18]  P. Meyer Martingales and Stochastic Integrals I , 1972 .

[19]  Christophe Stricker,et al.  Arbitrage et lois de martingale , 1990 .

[20]  M. Émery Une Topologie sur l’Espace des Semimartingales , 1979 .

[21]  J. Mémin,et al.  Espaces de semi martingales et changement de probabilité , 1980 .

[22]  Walter Schachermayer,et al.  The no-arbitrage property under a change of numéraire , 1995 .

[23]  David M. Kreps Arbitrage and equilibrium in economies with infinitely many commodities , 1981 .

[24]  W. Schachermayer Fundamental Theorem of Asset Pricing , 2010 .

[25]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[26]  Robert C. Dalang,et al.  Equivalent martingale measures and no-arbitrage in stochastic securities market models , 1990 .

[27]  A structural characterization of numéraires of convex sets of nonnegative random variables , 2010, 1003.5419.

[28]  S. Ross A Simple Approach to the Valuation of Risky Streams , 1978 .

[29]  Nicolas Perkowski,et al.  The existence of dominating local martingale measures , 2011, Finance Stochastics.

[30]  P. Protter,et al.  Weak convergence of stochastic integrals and differential equations , 1996 .

[31]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[32]  Yuri Kabanov,et al.  On the FTAP of Kreps-Delbaen-Schachermayer , 1997 .

[33]  W Schachermeyer The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes , 1997 .

[34]  J. Mémin,et al.  Condition UT et stabilité en loi des solutions d’équations différentielles stochastiques , 1991 .

[35]  J. Mémin,et al.  Convergence en loi des suites d'intégrales stochastiques sur l'espace $$\mathbb{D}$$ 1 de Skorokhod , 1989 .

[36]  C. Stricker Lois de semimartingales et critères de compacité , 1985 .