The use of the Hellwig's method for feature selection in the detection of myeloma bone destruction based on radiographic images

[1]  J. R. Quinlan Induction of decision trees , 2004, Machine Learning.

[2]  Jan Kybic,et al.  Automatic detection of bone marrow infiltration by multiple myeloma detection in low-dose CT , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[3]  Zhigang Zhao,et al.  Clinical characteristics and prognosis of multiple myeloma with bone-related extramedullary disease at diagnosis , 2018, Bioscience reports.

[4]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[5]  P. Choyke,et al.  Bone marrow abnormalities and early bone lesions in multiple myeloma and its precursor disease: a prospective study using functional and morphologic imaging , 2016, Leukemia & lymphoma.

[6]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[7]  A. Kahn,et al.  Myelomatosis: Fundamentals and Clinical Features , 1971 .

[8]  R. Subramaniam,et al.  MR imaging and PET/CT in diagnosis and management of multiple myeloma. , 2015, Radiographics : a review publication of the Radiological Society of North America, Inc.

[9]  Rolf Bendl,et al.  Spinal focal lesion detection in multiple myeloma using multimodal image features , 2015, Medical Imaging.

[10]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Sung C. Choi,et al.  Choice of the smoothing parameter and efficiency of k-nearest neighbor classification , 1986 .

[12]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[13]  B. Maldague,et al.  Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey , 1999, British journal of haematology.

[14]  E. Zamagni,et al.  The role of imaging techniques in the management of multiple myeloma , 2012, British journal of haematology.

[15]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[16]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[17]  L. Schad,et al.  MR image texture analysis--an approach to tissue characterization. , 1993, Magnetic resonance imaging.

[18]  S. Eustace,et al.  Multiple Myeloma: A Review of Imaging Features and Radiological Techniques , 2011, Bone marrow research.

[19]  Hartmut Goldschmidt,et al.  Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. , 2011, Blood.

[20]  M. Aljurf,et al.  The Evolution of Prognostic Factors in Multiple Myeloma , 2017, Advances in hematology.

[21]  Anil K. Jain,et al.  Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  F. J. Johnson,et al.  The reliability of diagnosing osteoporosis from spinal radiographs. , 1994, Age and ageing.

[23]  Hong Zhang,et al.  Multiple Metastasis-Like Bone Lesions in Scintigraphic Imaging , 2012, Journal of biomedicine & biotechnology.

[24]  T. J. Dennis,et al.  Textured image segmentation by context enhanced clustering , 1994 .

[25]  S. Salmon,et al.  A clinical staging system for multiple myeloma correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival , 1975, Cancer.

[26]  William N. Venables,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[27]  Christopher J. Hanrahan,et al.  Current concepts in the evaluation of multiple myeloma with MR imaging and FDG PET/CT. , 2010, Radiographics : a review publication of the Radiological Society of North America, Inc.

[28]  H Rabbani,et al.  Automatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifier , 2016, Journal of microscopy.

[29]  Zbigniew Omiotek,et al.  Fractal analysis of the grey and binary images in diagnosis of Hashimoto's thyroiditis , 2017 .

[30]  S. Rajkumar Evolving diagnostic criteria for multiple myeloma. , 2015, Hematology. American Society of Hematology. Education Program.

[31]  Jan Kybic,et al.  Detecting multiple myeloma via generalized multiple-instance learning , 2018, Medical Imaging.

[32]  S. Seshadri,et al.  Abnormal radiological features in a multiple myeloma patient: a case report and radiological review of myelomas. , 2011, Dento maxillo facial radiology.

[33]  Shu-Hsien Liao,et al.  Data mining techniques and applications - A decade review from 2000 to 2011 , 2012, Expert Syst. Appl..

[34]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[35]  A. Niccoli-Asabella,et al.  Myeloma bone and extra-medullary disease: Role of PET/CT and other whole-body imaging techniques. , 2016, Critical reviews in oncology/hematology.

[36]  Torsten Hothorn,et al.  Bundling Classifiers by Bagging Trees , 2002, Comput. Stat. Data Anal..

[37]  K. Verstraete,et al.  MRI in multiple myeloma: a pictorial review of diagnostic and post-treatment findings , 2016, Insights into Imaging.

[38]  Zbigniew Omiotek,et al.  Improvement of the classification quality in detection of Hashimoto’s disease with a combined classifier approach , 2017, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[39]  Jan Kybic,et al.  Fully automated classification of bone marrow infiltration in low-dose CT of patients with multiple myeloma based on probabilistic density model and supervised learning , 2016, Comput. Biol. Medicine.

[40]  C. Collins,et al.  What Is Multiple Myeloma? , 2022, JAMA.