Isolated calmness of solution mappings in convex semi-infinite optimization☆
暂无分享,去创建一个
Marco A. López | María J. Cánovas | Juan Parra | M. J. Cánovas | A. L. Dontchev | A. Dontchev | J. Parra | M. López
[1] Asen L. Dontchev,et al. Characterizations of Lipschitz Stability in Optimization , 1995 .
[2] T. Zolezzi,et al. Well-Posed Optimization Problems , 1993 .
[3] S. M. Robinson. Some continuity properties of polyhedral multifunctions , 1981 .
[4] B. Bank,et al. Non-Linear Parametric Optimization , 1983 .
[5] R. Rockafellar. Proto-Differentiability of Set-Valued Mappings and its Applications in Optimization☆ , 1989 .
[6] S. M. Robinson. Generalized equations and their solutions, Part I: Basic theory , 1979 .
[7] M. Ferris,et al. Weak sharp minima in mathematical programming , 1993 .
[8] B. Kummer,et al. Stability Properties of Infima and Optimal Solutions of Parametric Optimization Problems , 1985 .
[9] M. A. López-Cerdá,et al. Linear Semi-Infinite Optimization , 1998 .
[10] R. Tyrrell Rockafellar,et al. Ample Parameterization of Variational Inclusions , 2001, SIAM J. Optim..
[11] Diethard Klatte. Stable local minimizers in semi-infinite optimization: regularity and second-order conditions , 1994 .
[12] Marco A. López,et al. Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..
[13] Diethard Klatte,et al. Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .