A New Kernel Direct Discriminant Analysis (KDDA) Algorithm for Face Recognition

We propose a new kernel direct discriminant analysis (KDDA) algorithm in this paper. First, a recently advocated direct linear discriminant analysis (DLDA) algorithm is overviewed. Then the new KDDA algorithm is developed which can be considered as a kernel version of the DLDA algorithm. The design of the minimum distance classifier in the new kernel subspace is then discussed. The results of experiments on two well-known facial databases show the effectiveness of the proposed method in face recognition. The results of experiments also confirm that DLDA can be viewed as a special case of the proposed KDDA algorithm.

[1]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[2]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[3]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[4]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[5]  Zi-Quan Hong,et al.  Algebraic feature extraction of image for recognition , 1991, Pattern Recognit..

[6]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[7]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[8]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Josef Kittler,et al.  Audio-and Video-Based Biometrie Person Authentication, 4th International Conference, AVBPA 2003, Guildford, UK, June 9-11, 2003 Proceedings , 2003, AVBPA.

[10]  Gunnar Rätsch,et al.  Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh Coefficients in Kernel Feature Spaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[12]  Yong-Qing Cheng,et al.  An Efficient Algorithm for Foley-Sammon Optimal Set of Discriminant Vectors by Algebraic Method , 1992, Int. J. Pattern Recognit. Artif. Intell..

[13]  Jing-Yu Yang,et al.  Optimal discriminant plane for a small number of samples and design method of classifier on the plane , 1991, Pattern Recognit..

[14]  Josef Kittler On the Discriminant Vector Method of Feature Selection , 1977, IEEE Transactions on Computers.

[15]  Jing-Yu Yang,et al.  A generalized Foley-Sammon transform based on generalized fisher discriminant criterion and its application to face recognition , 2003, Pattern Recognit. Lett..

[16]  Jing-Yu Yang,et al.  A generalized optimal set of discriminant vectors , 1992, Pattern Recognit..

[17]  Josef Kittler,et al.  An analytical algorithm for determining the generalized optimal set of discriminant vectors , 2004, Pattern Recognit..

[18]  John W. Sammon,et al.  An Optimal Set of Discriminant Vectors , 1975, IEEE Transactions on Computers.

[19]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[20]  Shaogang Gong,et al.  Audio- and Video-based Biometric Person Authentication , 1997, Lecture Notes in Computer Science.

[21]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[22]  Rama Chellappa,et al.  Discriminant analysis of principal components for face recognition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[23]  Jing-Yu Yang,et al.  Optimal fisher discriminant analysis using the rank decomposition , 1992, Pattern Recognit..

[24]  Rama Chellappa,et al.  Discriminant analysis of principal components for face recognition , 1998 .

[25]  Narendra Ahuja,et al.  Face recognition using kernel eigenfaces , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[26]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[27]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[28]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[29]  John W. Sammon,et al.  An Optimal Discriminant Plane , 1970, IEEE Transactions on Computers.