The number of spanning trees of a graph with given matching number

The number of spanning trees of a graph G is the total number of distinct spanning subgraphs of G that are trees. In this paper, we present sharp upper bounds for the number of spanning trees of a graph with given matching number.

[1]  R. Merris Laplacian graph eigenvectors , 1998 .

[2]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[3]  Kinkar Chandra Das,et al.  Maximizing the sum of the squares of the degrees of a graph , 2004, Discret. Math..

[4]  Mei Hwei Wu Maximizing the number of spanning trees on the (p, p+2) graphs , 1990 .

[5]  Eva Nosal,et al.  Eigenvalues of graphs , 1970 .

[6]  Michael Doob,et al.  Spectra of graphs , 1980 .

[7]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[8]  Khodakhast Bibak,et al.  The number of spanning trees in some classes of graphs , 2012 .

[9]  Wai Chee Shiu,et al.  The number of spanning trees of a graph , 2010, Appl. Math. Lett..

[10]  Ş. Burcu Bozkurt Upper bounds for the number of spanning trees of graphs , 2012 .

[11]  L. R. Wang,et al.  MAXIMIZING THE NUMBER OF SPANNING-TREES OF NETWORKS BASED ON CYCLE BASIS REPRESENTATION , 1989 .

[12]  E. A. Nordhaus,et al.  On Complementary Graphs , 1956 .

[13]  Kinkar Chandra Das,et al.  Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph , 2013, Appl. Math. Comput..

[14]  Richard A. Brualdi,et al.  On the spectral radius of complementary acyclic matrices of zeros and ones , 1986 .

[15]  Russell Merris,et al.  The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..

[16]  B. Horoldagva,et al.  On Comparing Zagreb Indices of Graphs , 2012 .

[17]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[18]  Yasuo Teranishi,et al.  The number of spanning forests of a graph , 2005, Discret. Math..

[19]  Kinkar C Das,et al.  The number of spanning trees of a graph , 2013 .

[20]  Leonidas Palios,et al.  Maximizing the number of spanning trees in Kn-complements of asteroidal graphs , 2009, Discret. Math..

[21]  Bo Zhou,et al.  New upper bounds on Zagreb indices , 2009 .

[22]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[23]  Alexander K. Kelmans On graphs with the maximum number of spanning trees , 1996, Random Struct. Algorithms.

[24]  Russell Merris,et al.  A bound for the complexity of a simple graph , 1988, Discret. Math..

[25]  H. Kober On the arithmetic and geometric means and on Hölder’s inequality , 1958 .

[26]  Shing-Tung Yau,et al.  Coverings, Heat Kernels and Spanning Trees , 1998, Electron. J. Comb..

[27]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[28]  Brendan D. McKay,et al.  Spanning Trees in Regular Graphs , 1983, Eur. J. Comb..

[29]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[30]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[31]  Lihua Feng,et al.  The number of spanning trees of a graph , 2013, Int. J. Comput. Math..

[32]  Kinkar Chandra Das,et al.  A Sharp Upper Bound for the Number of Spanning Trees of a Graph , 2007, Graphs Comb..

[33]  Geoffrey R. Grimmett,et al.  An upper bound for the number of spanning trees of a graph , 1976, Discret. Math..

[34]  I. Gutman,et al.  Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .

[35]  Ching-Shui Cheng,et al.  Maximizing the total number of spanning trees in a graph: Two related problems in graph theory and optimum design theory , 1981, J. Comb. Theory B.