A label-free electrochemical DNA sensor to identify breast cancer susceptibility

[1]  H. P. Kang,et al.  Design and validation of a next generation sequencing assay for hereditary BRCA1 and BRCA2 mutation testing , 2016, PeerJ.

[2]  Wenchan Zhang,et al.  A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on electrochemically reduced graphene oxide , 2015 .

[3]  C. Delerue-Matos,et al.  3D-nanostructured Au electrodes for the event-specific detection of MON810 transgenic maize. , 2015, Talanta.

[4]  P. Kara,et al.  Label and indicator free electrochemical nanobiosensing of DNA hybridization based on MnO2 nanomaterial modified GCPE , 2014 .

[5]  Ke-Jing Huang,et al.  A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@graphene composite , 2014 .

[6]  Zhenxin Wang,et al.  Label-free electrochemical impedance genosensor based on 1-aminopyrene/graphene hybrids. , 2013, Nanoscale.

[7]  Thomas L. Madden,et al.  The BLAST Sequence Analysis Tool , 2013 .

[8]  V. Dharuman,et al.  Polypyrrole-polyaniline-Au (PPy-PANi-Au) nano composite films for label-free electrochemical DNA sensing , 2012 .

[9]  Soo-Hwang Teo,et al.  Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations , 2012, European Journal of Human Genetics.

[10]  Bo Liedberg,et al.  Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. , 2011, Biosensors & bioelectronics.

[11]  M. Ligaj,et al.  Electrochemical detection of foodborne pathogen Aeromonas hydrophila by DNA hybridization biosensor. , 2010, Biosensors & bioelectronics.

[12]  Eamonn Sheridan,et al.  Genetic diagnosis of familial breast cancer using clonal sequencing , 2010, Human mutation.

[13]  Jin-Young Park,et al.  DNA Hybridization Sensors Based on Electrochemical Impedance Spectroscopy as a Detection Tool , 2009, Sensors.

[14]  Anja Boisen,et al.  Gold cleaning methods for electrochemical detection applications , 2009 .

[15]  W. Schuhmann,et al.  Label‐Free Detection of DNA Hybridization in Presence of Intercalators Using Electrochemical Impedance Spectroscopy , 2009 .

[16]  Fred Lisdat,et al.  A label-free DNA sensor based on impedance spectroscopy , 2008 .

[17]  Pedro Estrela,et al.  Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. , 2008, Biosensors & bioelectronics.

[18]  Christian Soeller,et al.  Label-free detection of DNA hybridization based on a novel functionalized conducting polymer. , 2007, Biosensors & bioelectronics.

[19]  Martin A. M. Gijs,et al.  DNA biosensor using fluorescence microscopy and impedance spectroscopy , 2006 .

[20]  J. Justin Gooding,et al.  DNA Biosensor Concepts Based on a Change in the DNA Persistence Length upon Hybridization , 2006 .

[21]  Agustín Costa-García,et al.  DNA single-base mismatch study with an electrochemical enzymatic genosensor , 2006, Biosensors and Bioelectronics.

[22]  M. J. Esplandiu,et al.  Impedimetric genosensors for the detection of DNA hybridization , 2006, Analytical and bioanalytical chemistry.

[23]  T. Walsh,et al.  Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. , 2006, JAMA.

[24]  D. Wong,et al.  Direct application strategy to immobilise a thioctic acid self-assembled monolayer on a gold electrode , 2004 .

[25]  G. Marrazza,et al.  Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. , 2004, Biosensors & bioelectronics.

[26]  M. Wood,et al.  Identification of germline 185delAG BRCA1 mutations in non‐Jewish Americans of Spanish ancestry from the San Luis Valley, Colorado , 2003, Cancer.

[27]  Chunhai Fan,et al.  Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J P Landers,et al.  Capillary and microchip electrophoresis for rapid detection of known mutations by combining allele-specific DNA amplification with heteroduplex analysis. , 2001, Clinical chemistry.

[29]  A. Steel,et al.  Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. , 2000, Biophysical journal.

[30]  R. Eeles Future possibilities in the prevention of breast cancer: Intervention strategies in BRCA1 and BRCA2 mutation carriers , 2000, Breast Cancer Research.

[31]  M. Dowsett,et al.  BRCA1, BRCA2 and pedigree genetic analysis to determine genetic risk in the UK Royal Marsden Hospital tamoxifen prevention trial , 2000, Breast Cancer Research.

[32]  R. Tollenaar,et al.  Prevalence of BRCA1 in a hospital-based population of Dutch breast cancer patients , 1999, British Journal of Cancer.

[33]  G. Pals,et al.  A rapid and sensitive approach to mutation detection using real-time polymerase chain reaction and melting curve analyses, using BRCA1 as an example. , 1999, Molecular diagnosis : a journal devoted to the understanding of human disease through the clinical application of molecular biology.

[34]  H. Parkes,et al.  Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR. , 1998, Nucleic acids research.

[35]  T. M. Herne,et al.  Characterization of DNA Probes Immobilized on Gold Surfaces , 1997 .

[36]  F. Couch,et al.  BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. , 1997, The New England journal of medicine.

[37]  I. Lerer,et al.  The founder mutations 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 appear in 60% of ovarian cancer and 30% of early-onset breast cancer patients among Ashkenazi women. , 1997, American journal of human genetics.

[38]  Yonghong Xiao,et al.  Association of BRCA1 with Rad51 in Mitotic and Meiotic Cells , 1997, Cell.

[39]  Y. Chen,et al.  BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. , 1996, Cancer research.

[40]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[41]  V. Zucolotto,et al.  Nanostructured materials and nanoparticles for point of care (POC) medical biosensors , 2017 .

[42]  Valtencir Zucolotto,et al.  Disposable biosensors for clinical diagnosis. , 2014, Journal of nanoscience and nanotechnology.

[43]  J P Landers,et al.  Single-strand conformation polymorphism analysis by capillary and microchip electrophoresis: a fast, simple method for detection of common mutations in BRCA1 and BRCA2. , 2000, Genomics.

[44]  F. Couch,et al.  Direct detection of mutations in the breast and ovarian cancer susceptibility gene BRCA1 by PCR-mediated site-directed mutagenesis. , 1997, Clinical chemistry.