Model Predictive Control Embedding a Parallel Hybrid Modeling Strategy

This work addresses the problem of implementing a model predictive control (MPC) scheme that embeds a parallel hybrid subspace model as the predictive component of the control strategy. The hybrid ...

[1]  Prashant Mhaskar,et al.  Model predictive quality control of Polymethyl methacrylate , 2013, 2013 American Control Conference.

[2]  Prashant Mhaskar,et al.  Data-Based Modeling and Control of Nylon-6, 6 Batch Polymerization , 2013, IEEE Transactions on Control Systems Technology.

[3]  Prashant Mhaskar,et al.  Subspace Identification Based Modeling and Control of Batch Particulate Processes , 2017, Modeling and Control of Batch Processes.

[4]  J. Macgregor,et al.  Control of Particle Size Distributions in Emulsion Semibatch Polymerization Using Mid-Course Correction Policies , 2002 .

[5]  S. Wold,et al.  Nonlinear PLS modeling , 1989 .

[6]  Francis J. Doyle,et al.  Hybrid model-based approach to batch-to-batch control of particle size distribution in emulsion polymerization , 2003, Comput. Chem. Eng..

[7]  Babu Joseph,et al.  Predictive control of quality in batch polymerization using hybrid ANN models , 1996 .

[8]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[9]  Panagiotis D. Christofides,et al.  Nonlinear control of particulate processes , 1999 .

[10]  Prashant Mhaskar,et al.  Subspace based model identification for missing data , 2020 .

[11]  Debanjan Ghosh,et al.  Hybrid Modeling Approach Integrating First-Principles Models with Subspace Identification , 2019, Industrial & Engineering Chemistry Research.

[12]  Prashant Mhaskar,et al.  Subspace identification for data‐driven modeling and quality control of batch processes , 2016 .

[13]  Biao Huang,et al.  A data driven subspace approach to predictive controller design , 2001 .

[14]  M. Mazzotti,et al.  Model-Based Optimization of Particle Size Distribution in Batch-Cooling Crystallization of Paracetamol , 2004 .

[15]  Panagiotis D. Christofides,et al.  Predictive control of particle size distribution in particulate processes , 2006 .

[16]  Thomas J. McAvoy,et al.  Nonlinear PLS Modeling Using Neural Networks , 1992 .

[17]  Prashant Mhaskar,et al.  Latent Variable Model Predictive Control (LV-MPC) for trajectory tracking in batch processes , 2010 .

[18]  R. Braatz,et al.  Integrated batch‐to‐batch and nonlinear model predictive control for polymorphic transformation in pharmaceutical crystallization , 2011 .

[19]  P. Van Overschee,et al.  Two subspace algorithms for the identification of combined deterministic-stochastic systems , 1992 .

[20]  Si-Zhao Joe Qin,et al.  An overview of subspace identification , 2006, Comput. Chem. Eng..

[21]  G. P. Rangaiah,et al.  First-Principles, Data-Based, and Hybrid Modeling and Optimization of an Industrial Hydrocracking Unit , 2006 .

[22]  Mohd Azlan Hussain,et al.  Control of polystyrene batch reactors using neural network based model predictive control (NNMPC): An experimental investigation , 2011 .

[23]  Petia Georgieva,et al.  Nonlinear MPC for fed-batch multiple stages sugar crystallization , 2011 .

[24]  Joseph Sang-Il Kwon,et al.  Application of Koopman operator for model-based control of fracture propagation and proppant transport in hydraulic fracturing operation , 2020 .

[25]  John F. MacGregor,et al.  Latent variable MPC for trajectory tracking in batch processes , 2005 .

[26]  Prashant Mhaskar,et al.  Model predictive control of uni-axial rotational molding process , 2019, Comput. Chem. Eng..

[27]  Joseph Sang-Il Kwon,et al.  Deep hybrid modeling of chemical process: Application to hydraulic fracturing , 2020, Comput. Chem. Eng..

[28]  W. Harmon Ray,et al.  Control of systems described by population balance equations—II. Emulsion polymerization with constrained control action , 1995 .

[29]  Sebastião Feyo de Azevedo,et al.  Hybrid semi-parametric modeling in process systems engineering: Past, present and future , 2014, Comput. Chem. Eng..

[30]  M. Moonen,et al.  On- and off-line identification of linear state-space models , 1989 .

[31]  Panagiotis D. Christofides,et al.  Enhancing the Crystal Production Rate and Reducing Polydispersity in Continuous Protein Crystallization , 2014 .

[32]  P. A. Minderman,et al.  INTEGRATING NEURAL NETWORKS WITH FIRST PRINCIPLES MODELS FOR DYNAMIC MODELING , 1992 .

[33]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[34]  Babu Joseph,et al.  Predictive control of quality in a batch manufacturing process using artificial neural network models , 1993 .

[35]  Prashant Mhaskar,et al.  Data-Driven Modeling and Quality Control of Variable Duration Batch Processes with Discrete Inputs , 2017 .

[36]  Prashant Mhaskar,et al.  Model predictive control with closed-loop re-identification , 2018, Comput. Chem. Eng..

[37]  Lyle H. Ungar,et al.  A hybrid neural network‐first principles approach to process modeling , 1992 .

[38]  Dominique Bonvin Control and optimization of batch processes , 2006 .

[39]  Karel Ch. A. M. Luyben,et al.  Strategy for dynamic process modeling based on neural networks in macroscopic balances , 1996 .

[40]  T. McAvoy,et al.  Use of Hybrid Models in Wastewater Systems , 2000 .

[41]  Ali Cinar,et al.  Model-Fusion-Based Online Glucose Concentration Predictions in People with Type 1 Diabetes. , 2018, Control engineering practice.

[42]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[43]  Prashant Mhaskar,et al.  Subspace-based model identification of a hydrogen plant startup dynamics , 2017, Comput. Chem. Eng..