A frequency-doubled laser system producing ns pulses for rubidium manipulation

We have constructed a pulsed laser system for the manipulation of cold 87Rb atoms. The system combines optical telecommunications components and frequency doubling to generate light at 780 nm. Using a fast, fibre-coupled intensity modulator, we sliced output from a continuous laser diode into pulses with a length between 1.3 and 6.1 ns and a repetition frequency of 5 MHz. These pulses are amplified using an erbium-doped fibre amplifier, and frequency-doubled in a periodically poled lithium niobate crystal, yielding a peak power up to 12 W. Using the resulting light at 780 nm, we demonstrate Rabi oscillations on the F=2,mF=+2↔F′=3, m′F=+3-transition of a single 87Rb atom.