Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid–structure interaction coupling problems

We present some recent advances and improvements in shape parametrisation techniques of interfaces for reduced-order modelling with special attention to fluid–structure interaction problems and the management of structural deformations, namely, to represent them into a low-dimensional space (by control points). This allows to reduce the computational effort, and to significantly simplify the (geometrical) deformation procedure, leading to more efficient and fast reduced-order modelling applications in this kind of problems. We propose an efficient methodology to select the geometrical control points for the radial basis functions based on a modal greedy algorithm to improve the computational efficiency in view of more complex fluid–structure applications in several fields. The examples provided deal with aeronautics and wind engineering.

[1]  Jeroen A. S. Witteveen,et al.  Explicit Mesh Deformation Using Inverse Distance Weighting Interpolation , 2009 .

[2]  Gianluigi Rozza,et al.  Model Order Reduction: a survey , 2016 .

[3]  E. J. Gunter,et al.  A Study of the Modal Truncation Error in the Component Mode Analysis of a Dual-Rotor System , 1982 .

[4]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[5]  Cornel Marius Murea,et al.  The BFGS algorithm for a nonlinear least squares problem arising from blood flow in arteries , 2005 .

[6]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[7]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[8]  Hester Bijl,et al.  Review of coupling methods for non-matching meshes , 2007 .

[9]  Christian B. Allen,et al.  Efficient mesh motion using radial basis functions with data reduction algorithms , 2008, J. Comput. Phys..

[10]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[11]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[12]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[13]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[14]  Gianluigi Rozza,et al.  A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks , 2012 .

[15]  Gianluigi Rozza,et al.  A Reduced Basis Model with Parametric Coupling for Fluid-Structure Interaction Problems , 2012, SIAM J. Sci. Comput..

[16]  Martin Goland,et al.  Principles of aeroelasticity , 1975 .

[17]  H. Wendland,et al.  Multivariate interpolation for fluid-structure-interaction problems using radial basis functions , 2001 .

[18]  Andreas K. Michler,et al.  Aircraft control surface deflection using RBF‐based mesh deformation , 2011 .

[19]  D. Sandwell BIHARMONIC SPLINE INTERPOLATION OF GEOS-3 AND SEASAT ALTIMETER DATA , 1987 .

[20]  Alfio Quarteroni,et al.  A Rescaled Localized Radial Basis Function Interpolation on Non-Cartesian and Nonconforming Grids , 2014, SIAM J. Sci. Comput..

[21]  Gianluigi Rozza,et al.  Certified reduced basis approximation for parametrized partial differential equations and applications , 2011 .

[22]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[23]  Gianluigi Rozza,et al.  Shape Optimization by Free-Form Deformation: Existence Results and Numerical Solution for Stokes Flows , 2014, J. Sci. Comput..

[24]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[25]  A. Quarteroni,et al.  Model reduction techniques for fast blood flow simulation in parametrized geometries , 2012, International journal for numerical methods in biomedical engineering.

[26]  Gianluigi Rozza,et al.  Free Form Deformation Techniques Applied to 3D Shape Optimization Problems , 2013 .

[27]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[28]  Gianluigi Rozza,et al.  Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization , 2012 .

[29]  G. Rozza,et al.  Model Order Reduction by geometrical parametrization for shape optimization in computational fluid dynamics , 2010 .

[30]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[31]  G. Rozza,et al.  Parametric free-form shape design with PDE models and reduced basis method , 2010 .

[32]  C. Murea Numerical simulation of a pulsatile flow through a flexible channel , 2006 .

[33]  G. Rozza,et al.  Model Reduction of Steady Fluid-Structure Interaction Problems with Free-Foem Deformations and Reduced Basis Methods , 2009 .

[34]  Kevin Warwick,et al.  Mean-tracking clustering algorithm for radial basis function centre selection , 1997 .

[35]  A. Quarteroni,et al.  A reduced computational and geometrical framework for inverse problems in hemodynamics , 2013, International journal for numerical methods in biomedical engineering.

[36]  A. Quarteroni,et al.  Shape optimization for viscous flows by reduced basis methods and free‐form deformation , 2012 .

[37]  Eugenio Oñate,et al.  Fluid–structure interaction problems with strong added‐mass effect , 2009 .