The Distribution of the first Eigenvalue Spacing at the Hard Edge of the Laguerre Unitary Ensemble

The distribution function for the first eigenvalue spacing in the Laguerre unitary ensemble of finite rank random matrices is found in terms of a Painlev\'e V system, and the solution of its associated linear isomonodromic system. In particular it is characterised by the polynomial solutions to the isomonodromic equations which are also orthogonal with respect to a deformation of the Laguerre weight. In the scaling to the hard edge regime we find an analogous situation where a certain Painlev\'e \IIId system and its associated linear isomonodromic system characterise the scaled distribution. We undertake extensive analytical studies of this system and use this knowledge to accurately compute the distribution and its moments for various values of the parameter $ a $. In particular choosing $ a=\pm 1/2 $ allows the first eigenvalue spacing distribution for random real orthogonal matrices to be computed.

[1]  Michio Jimbo,et al.  Monodromy Problem and the Boundary Condition for Some Painlevé Equations , 1982 .

[2]  P. Sarnak,et al.  Zeroes of zeta functions and symmetry , 1999 .

[3]  P. Maroni,et al.  Prolégomènes à l'étude des polynômes orthogonaux semi-classiques , 1987 .

[4]  William C. Bauldry Estimates of asymmetric Freud polynomials on the real line , 1990 .

[5]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .

[6]  Alphonse P. Magnus,et al.  Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .

[7]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[8]  Michael O. Rubinstein,et al.  Computational methods and experiments in analytic number theory , 2004 .

[9]  D. Clark,et al.  Estimates of the Hermite and the Freud polynomials , 1990 .

[10]  Peter J. Forrester,et al.  Complex Wishart matrices and conductance in mesoscopic systems: Exact results , 1994 .

[11]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[12]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[13]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[14]  D. Lubinsky Asymptotics of Orthogonal Polynomials: Some Old, Some New, Some Identities , 2000 .

[15]  P. Forrester Exact results and universal asymptotics in the Laguerre random matrix ensemble , 1994 .

[16]  A. Aptekarev ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS IN A NEIGHBORHOOD OF THE ENDPOINTS OF THE INTERVAL OF ORTHOGONALITY , 1993 .

[17]  Athanassios S. Fokas,et al.  On the solvability of Painlevé II and IV , 1992 .

[18]  Kazuo Okamoto Studies on the Painlevé equations , 1986 .

[19]  Herbert Spohn,et al.  Exact Scaling Functions for One-Dimensional Stationary KPZ Growth , 2004 .

[20]  Kazuo Okamoto Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .

[21]  A. Ronveaux,et al.  Laguerre-Freud's equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1994 .

[22]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .

[23]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[24]  P. J. Forrester,et al.  Application of the τ-function theory of Painlevé equations to random matrices: PV, PIII, the LUE, JUE, and CUE , 2002 .

[25]  A. V. Kitaev,et al.  THE METHOD OF ISOMONODROMY DEFORMATIONS AND THE ASYMPTOTICS OF SOLUTIONS OF THE “COMPLETE” THIRD PAINLEVÉ EQUATION , 1989 .

[26]  J. Verbaarschot The spectrum of the Dirac operator near zero virtuality for Nc = 2 and chiral random matrix theory , 1994 .

[27]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[28]  J. Normand,et al.  Calculation of some determinants using the s-shifted factorial , 2004, math-ph/0401006.

[29]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .