On BMS invariance of gravitational scattering

A bstractBMS+ transformations act nontrivially on outgoing gravitational scattering data while preserving intrinsic structure at future null infinity (ℐ$$ \mathrm{\mathcal{I}} $$+). BMS− transformations similarly act on ingoing data at past null infinity (ℐ$$ \mathrm{\mathcal{I}} $$−). In this paper we apply — within a suitable finite neighborhood of the Minkowski vacuum — results of Christodoulou and Klainerman to link ℐ$$ \mathrm{\mathcal{I}} $$+ to ℐ$$ \mathrm{\mathcal{I}} $$− and thereby identify “diagonal” elements BMS0 of BMS+ × BMS−. We argue that BMS0 is a nontrivial infinite-dimensional symmetry of both classical gravitational scattering and the quantum gravity S$$ \mathcal{S} $$-matrix. It implies the conservation of net accumulated energy flux at every angle on the conformal S2 at ℐ$$ \mathrm{\mathcal{I}} $$. The associated Ward identity is shown to relate S-matrix elements with and without soft gravitons. Finally, BMS0 is recast as a U(1) Kac-Moody symmetry and an expression for the Kac-Moody current is given in terms of a certain soft graviton operator on the boundary of ℐ$$ \mathrm{\mathcal{I}} $$.

[1]  A. Ashtekar,et al.  Symplectic geometry of radiative modes and conserved quantities at null infinity , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  A. Strominger Asymptotic symmetries of Yang-Mills theory , 2013, 1308.0589.

[3]  Abhay Ashtekar,et al.  Asymptotic quantization : based on 1984 Naples lectures , 1987 .

[4]  A. P. Balachandran,et al.  Spontaneous Lorentz violation in gauge theories , 2013, 1302.3406.

[5]  D. Raine General relativity , 1980, Nature.

[6]  R. Akhoury,et al.  Construction of an asymptotic S matrix for perturbative quantum gravity , 2013, 1308.6285.

[7]  G. Barnich,et al.  Symmetries of asymptotically flat four-dimensional spacetimes at null infinity revisited. , 2009, Physical review letters.

[8]  A. Strominger,et al.  BMS supertranslations and Weinberg’s soft graviton theorem , 2014, Journal of High Energy Physics.

[9]  D. Blair Gravitational waves in general relativity , 1991 .

[10]  O. W. Greenberg,et al.  The Quantum Theory of Fields, Vol. 1: Foundations , 1995 .

[11]  G. Barnich,et al.  Supertranslations call for superrotations , 2011, 1102.4632.

[12]  R. O. Hansen,et al.  A unified treatment of null and spatial infinity in general relativity. I - Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity , 1978 .

[13]  A. Ashtekar Asymptotic Quantization of the Gravitational Field , 1981 .

[14]  G. Barnich,et al.  BMS charge algebra , 2011, 1106.0213.

[15]  Christodoulou,et al.  Nonlinear nature of gravitation and gravitational-wave experiments. , 1991, Physical review letters.

[16]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[17]  G. Barnich,et al.  Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity , 2013, 1309.0794.

[18]  Hermann Bondi,et al.  Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  R. Sachs Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  S. Weinberg Infrared photons and gravitons , 1965 .

[21]  A Critique of Pure String Theory: Heterodox Opinions of Diverse Dimensions , 2003, hep-th/0306074.

[22]  G. Barnich,et al.  Einstein-Yang-Mills theory: Asymptotic symmetries , 2013, 1310.2698.

[23]  L. Faddeev,et al.  Asymptotic conditions and infrared divergences in quantum electrodynamics , 1970 .