A New Lifetime Distribution with Increasing Failure Rate: Exponential Truncated Poisson

In this paper, a new two-parameter lifetime distribution with increasing failure rate is introduced for maximum survival time in exponential truncate Poisson distribution. Various properties of the proposed distribution are discussed. The estimation of the parameters attained by the EM algorithm. The asymptotic variance and covariance are also obtained. In order to assess the accuracy of the approximation of variance and covariance of the maximum likelihood estimators, simulation studies are performed and experimental results are illustrated based on four real data sets. A complete comparison between our model and three recent models is also performed.

[1]  Sam C. Saunders,et al.  Maximum Likelihood Estimation for Two-Parameter Decreasing Hazard Rate Distributions Using Censored Data , 1983 .

[2]  Karl D. Majeske,et al.  A mixture model for automobile warranty data , 2003, Reliab. Eng. Syst. Saf..

[3]  Ashutosh Gupta,et al.  Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation , 2008, Reliab. Eng. Syst. Saf..

[4]  Min Xie,et al.  Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function , 1996 .

[5]  Frank Proschan,et al.  Maximum Likelihood Estimation for Distributions with Monotone Failure Rate , 1965 .

[6]  S. Loukas,et al.  A lifetime distribution with decreasing failure rate , 1998 .

[7]  K. Lomax Business Failures: Another Example of the Analysis of Failure Data , 1954 .

[8]  D. N. Prabhakar Murthy,et al.  Weibull model selection for reliability modelling , 2004, Reliab. Eng. Syst. Saf..

[9]  C. L. Atwood,et al.  Aging data analysis and risk assessment: Development and demonstration study , 1992 .

[10]  Matija Fajdiga,et al.  Reliability approximation using finite Weibull mixture distributions , 2004, Reliab. Eng. Syst. Saf..

[11]  A. W. Marshall,et al.  Properties of Probability Distributions with Monotone Hazard Rate , 1963 .

[12]  F.K Wang,et al.  A new model with bathtub-shaped failure rate using an additive Burr XII distribution , 2000, Reliab. Eng. Syst. Saf..

[13]  Saralees Nadarajah,et al.  A new lifetime distribution , 2014 .

[14]  Hans Conrad,et al.  Statistical analysis of the Hertzian fracture of pyrex glass using the Weibull distribution function , 1980 .

[15]  Chin-Diew Lai,et al.  A flexible Weibull extension , 2007, Reliab. Eng. Syst. Saf..

[16]  J. Almeida,et al.  Application of Weilbull statistics to the failure of coatings , 1999 .

[17]  Thong Ngee Goh,et al.  A modified Weibull extension with bathtub-shaped failure rate function , 2002, Reliab. Eng. Syst. Saf..

[18]  R. Jiang,et al.  Aging property of unimodal failure rate models , 2003, Reliab. Eng. Syst. Saf..

[19]  S. Rahman Reliability Engineering and System Safety , 2011 .

[20]  Anwar Khalil Sheikh,et al.  A probabilistic characterization of adhesive wear in metals , 1997 .

[21]  J. Cozzolino Probabilistic models of decreasing failure rate processes , 1968 .

[22]  Narayanaswamy Balakrishnan,et al.  Estimation of parameters from progressively censored data using EM algorithm , 2002 .

[23]  J. Sethuraman,et al.  Reversal of Increasing Failure Rates When Pooling Failure Data , 1994 .

[24]  J. Gurland,et al.  Goodness of Fit Tests for the Gamma and Exponential Distributions , 1972 .

[25]  F. McNolty,et al.  Properties of the Mixed Exponential Failure Process , 1980 .

[26]  Charles E. Antle,et al.  Discrimination Between the Log-Normal and the Weibull Distributions , 1973 .

[27]  Magne Vollan Aarset,et al.  How to Identify a Bathtub Hazard Rate , 1987, IEEE Transactions on Reliability.

[28]  S. D. Durham,et al.  Cumulative damage models for system failure with application to carbon fibers and composites , 1997 .

[29]  Leon Jay Gleser,et al.  The Gamma Distribution as a Mixture of Exponential Distributions , 1989 .

[30]  G. S. Mudholkar,et al.  Exponentiated Weibull family for analyzing bathtub failure-rate data , 1993 .

[31]  Dikai Liu,et al.  FAILURE PROBABILITY PREDICTION OF CONCRETE COMPONENTS , 2003 .

[32]  D. N. Prabhakar Murthy,et al.  A modified Weibull distribution , 2003, IEEE Trans. Reliab..

[33]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[34]  Barry Marsden,et al.  A numerical study on the application of the Weibull theory to brittle materials , 2001 .

[35]  H. Akaike A new look at the statistical model identification , 1974 .

[36]  Sadegh Rezaei,et al.  A two-parameter lifetime distribution with decreasing failure rate , 2008, Comput. Stat. Data Anal..

[37]  Lyn R. Whitaker,et al.  Estimating Distributions with Increasing Failure Rate in an Imperfect Repair Model , 2002, Lifetime data analysis.

[38]  James A. Newell,et al.  Analysis of Recoil Compressive Failure in High Performance Polymers Using Two and Four Parameter Weibull Models , 2002 .

[39]  Frank Proschan Theoretical Explanation of Observed Decreasing Failure Rate , 2000, Technometrics.

[40]  A. W. Marshall,et al.  Tables of Bounds for Distributions with Monotone Hazard Rate , 1965 .

[41]  Gianpaolo Pulcini,et al.  A mixed-Weibull regression model for the analysis of automotive warranty data , 2005, Reliab. Eng. Syst. Saf..

[42]  M. M. Nassar,et al.  Two properties of mixtures of exponential distributions , 1988 .

[43]  D. A. Hansen,et al.  Statistical Modeling of Pitting Corrosion and Pipeline Reliability , 1990 .

[44]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .