Transferring Knowledge from Discourse to Arguments: A Case Study with Scientific Abstracts

In this work we propose to leverage resources available with discourse-level annotations to facilitate the identification of argumentative components and relations in scientific texts, which has been recognized as a particularly challenging task. In particular, we implement and evaluate a transfer learning approach in which contextualized representations learned from discourse parsing tasks are used as input of argument mining models. As a pilot application, we explore the feasibility of using automatically identified argumentative components and relations to predict the acceptance of papers in computer science venues. In order to conduct our experiments, we propose an annotation scheme for argumentative units and relations and use it to enrich an existing corpus with an argumentation layer.

[1]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[2]  Iryna Gurevych,et al.  Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging , 2017, EMNLP.

[3]  Houfeng Wang,et al.  Go Climb a Dependency Tree and Correct the Grammatical Errors , 2014, EMNLP.

[4]  Iryna Gurevych,et al.  Argumentation Mining on the Web from Information Seeking Perspective , 2014, ArgNLP.

[5]  Iryna Gurevych,et al.  Parsing Argumentation Structures in Persuasive Essays , 2016, CL.

[6]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[7]  Horacio Saggion,et al.  A Multi-Layered Annotated Corpus of Scientific Papers , 2016, LREC.

[8]  Goran Glavas,et al.  ArguminSci: A Tool for Analyzing Argumentation and Rhetorical Aspects in Scientific Writing , 2018, ArgMining@EMNLP.

[9]  Goran Glavas,et al.  An Argument-Annotated Corpus of Scientific Publications , 2018, ArgMining@EMNLP.

[10]  An Yang,et al.  SciDTB: Discourse Dependency TreeBank for Scientific Abstracts , 2018, ACL.

[11]  Manfred Stede,et al.  Joint prediction in MST-style discourse parsing for argumentation mining , 2015, EMNLP.

[12]  Iryna Gurevych,et al.  Neural End-to-End Learning for Computational Argumentation Mining , 2017, ACL.

[13]  Serena Villata,et al.  From Discourse Analysis to Argumentation Schemes and Back: Relations and Differences , 2013, CLIMA.

[14]  Simone Teufel,et al.  Towards Domain-Independent Argumentative Zoning: Evidence from Chemistry and Computational Linguistics , 2009, EMNLP.

[15]  Nancy Green,et al.  Identifying Argumentation Schemes in Genetics Research Articles , 2015, ArgMining@HLT-NAACL.

[16]  Nicholas Asher,et al.  How much progress have we made on RST discourse parsing? A replication study of recent results on the RST-DT , 2017, EMNLP.

[17]  Andrew McCallum,et al.  Open Scholarship and Peer Review: a Time for Experimentation , 2013 .

[18]  Dragomir R. Radev,et al.  The ACL anthology network corpus , 2009, Language Resources and Evaluation.

[19]  Simone Teufel,et al.  Argumentative Zoning Applied to Critiquing Novices' Scientific Abstracts , 2006, Computing Attitude and Affect in Text.

[20]  A. Peldszus An Annotated Corpus of Argumentative Microtexts , 2015 .

[21]  Dietrich Rebholz-Schuhmann,et al.  Automatic recognition of conceptualization zones in scientific articles and two life science applications , 2012, Bioinform..

[22]  Bhavana Dalvi,et al.  A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications , 2018, NAACL.

[23]  Benno Stein,et al.  Computational Argumentation Quality Assessment in Natural Language , 2017, EACL.

[24]  Liang Wang,et al.  Text-level Discourse Dependency Parsing , 2014, ACL.

[25]  Douglas Walton,et al.  Informal Logic: A Handbook for Critical Argumentation , 1989 .

[26]  Simone Teufel,et al.  Argumentative zoning information extraction from scientific text , 1999 .

[27]  Simone Teufel,et al.  Corpora for the Conceptualisation and Zoning of Scientific Papers , 2010, LREC.

[28]  Antje Timmer,et al.  Determinants of abstract acceptance for the Digestive Diseases Week – a cross sectional study , 2001, BMC medical research methodology.

[29]  Fernando Alva-Manchego,et al.  SciEsp: Structural Analysis of Abstracts Written in Spanish , 2016, Computación y Sistemas.

[30]  William C. Mann,et al.  Rhetorical structure theory and text analysis , 1989 .

[31]  Marie-Francine Moens,et al.  Argumentation mining , 2011, Artificial Intelligence and Law.

[32]  Iryna Gurevych,et al.  Cross-topic Argument Mining from Heterogeneous Sources , 2018, EMNLP.

[33]  Suresh Manandhar,et al.  Dependency Based Embeddings for Sentence Classification Tasks , 2016, NAACL.

[34]  Iryna Gurevych,et al.  Linking the Thoughts: Analysis of Argumentation Structures in Scientific Publications , 2015, ArgMining@HLT-NAACL.

[35]  Antje Timmer,et al.  BMC Medical Research Methodology Research article Design of Phase II cancer trials evaluating survival , 2003 .

[36]  Manfred Stede,et al.  GraPAT: a Tool for Graph Annotations , 2014, LREC.

[37]  Paolo Torroni,et al.  Argumentation Mining , 2016, ACM Trans. Internet Techn..

[38]  Owen Rambow,et al.  Identifying Justifications in Written Dialogs by Classifying Text as Argumentative , 2011, Int. J. Semantic Comput..

[39]  Iryna Gurevych,et al.  Argumentation Mining in Persuasive Essays and Scientific Articles from the Discourse Structure Perspective , 2014, ArgNLP.

[40]  Lutz Bornmann,et al.  Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references , 2014, J. Assoc. Inf. Sci. Technol..

[41]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[42]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[43]  Simone Teufel Towards Discipline-Independent Argumentative Zoning : Evidence from Chemistry and Computational Linguistics , 2009 .

[44]  S. Thompson,et al.  Discourse description : diverse linguistic analyses of a fund-raising text , 1992 .

[45]  Manfred Stede,et al.  Parallel Discourse Annotations on a Corpus of Short Texts , 2016, LREC.

[46]  Manfred Stede,et al.  Rhetorical structure and argumentation structure in monologue text , 2016, ArgMining@ACL.

[47]  K. Hyland,et al.  Hedging in scientific research articles , 1998 .