Sleep and general anesthesia

PurposeThe mechanisms through which general anesthetics cause reversible loss of consciousness are characterized poorly. In this review, we examine the evidence that anesthetic-induced loss of consciousness may be caused by actions on the neuronal pathways that produce natural sleep.Principal findingsIt is clear that many general anesthetics produce effects in the brain (detected on electroencephalogram recordings) that are similar to those seen during non-rapid eye movement non-(REM) sleep. Gamma aminobutyric acid (GABA)ergic hypnogenic neurons are thought to be critical for generating non-REM sleep through their inhibitory projections to wake-active regions of the brain. The postsynaptic GABAA receptor is a major molecular target of many anesthetics and thus may be a point of convergence between natural sleep and anesthesia. Furthermore, we also present growing evidence in this review that modulating wake-active neurotransmitter (e.g., acetylcholine, histamine) release can impact on anesthesia, supporting the idea that this point of convergence is at the level of the brain arousal systems.ConclusionsWhile it is clear that general anesthetics can have effects at various points in the sleep-wake circuitry, it remains to be seen which points are true anesthetic targets. It will be challenging to separate non-specific effects on baseline arousal from a causal mechanism. Sophisticated experimental approaches are necessary to address basic mechanisms of sleep and anesthesia and should advance our understanding in both of these fields.RésuméObjectifLes mécanismes par lesquels les anesthésiques généraux induisent une perte de conscience réversible sont mal caractérisés. Dans ce compte-rendu, nous examinons les données probantes qui soutiennent que la perte de conscience induite par l’anesthésie pourrait être provoquée par des actions sur les voies neuronales qui produisent le sommeil naturel.Constatations principalesIl est clair que plusieurs anesthésiques généraux produisent des effets sur le cerveau (tels que détectés lors de l’enregistrement d’électroencéphalogrammes) qui ressemblent à ceux observés pendant le sommeil lent. On pense que les neurones hypnogènes GABAergiques sont des éléments cruciaux pour la génération du sommeil lent en raison de leurs projections inhibitrices dans les régions du cerveau actives à l’éveil. Le récepteur GABAA post-synaptique est une importante cible moléculaire de plusieurs anesthésiques et pourrait par conséquent constituer un point de convergence entre le sommeil naturel et l’anesthésie. De plus, nous présentons aussi dans ce compte-rendu des données probantes de plus en plus nombreuses qui suggèrent que la modulation de la libération des neurotransmetteurs actifs à l’éveil (par ex., acetylcholine, histamine) pourrait avoir un impact sur l’anesthésie, ce qui corrobore l’hypothèse selon laquelle ce point de convergence se situe au niveau des systèmes d’éveil du cerveau.ConclusionAlors qu’il est clair que les anesthésiques généraux peuvent avoir des effets sur divers points du circuit veille-sommeil, les points constituant de véritables cibles anesthésiques restent à être déterminé. Le défi sera de pouvoir distinguer les effets non spécifiques sur le réveil de base des mécanismes causaux. Il faudra utiliser des approches expérimentales perfectionnées pour aborder les mécanismes de base du sommeil et de l’anesthésie. De telles approches devraient faire progresser notre compréhension de ces domaines.

[1]  M. Sterman,et al.  Forebrain inhibitory mechanisms: cortical synchronization induced by basal forebrain stimulation. , 1962, Experimental neurology.

[2]  E. Mignot,et al.  The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. , 2002, Archives of neurology.

[3]  S. Aalto,et al.  Effects of Sevoflurane, Propofol, and Adjunct Nitrous Oxide on Regional Cerebral Blood Flow, Oxygen Consumption, and Blood Volume in Humans , 2003, Anesthesiology.

[4]  R. McCarley,et al.  Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep–wakefulness and prolonged wakefulness: An in vivo microdialysis study , 2002, Neuroscience.

[5]  R. Szymusiak,et al.  Sleep‐waking discharge patterns of median preoptic nucleus neurons in rats , 2002, The Journal of physiology.

[6]  G. Aston-Jones,et al.  Halothane-induced Hypnosis Is Not Accompanied by Inactivation of Orexinergic Output in Rodents , 2009, Anesthesiology.

[7]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[8]  A. Sillito,et al.  Looking back: corticothalamic feedback and early visual processing , 2006, Trends in Neurosciences.

[9]  R. Szymusiak,et al.  Sleep-related neuronal discharge in the basal forebrain of cats , 1986, Brain Research.

[10]  M. I. Smith,et al.  Orexin A activates locus coeruleus cell firing and increases arousal in the rat. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Sven G Meuth,et al.  Contribution of TWIK-Related Acid-Sensitive K+ Channel 1 (TASK1) and TASK3 Channels to the Control of Activity Modes in Thalamocortical Neurons , 2003, The Journal of Neuroscience.

[12]  Jun Lu,et al.  The &agr;2-Adrenoceptor Agonist Dexmedetomidine Converges on an Endogenous Sleep-promoting Pathway to Exert Its Sedative Effects , 2003, Anesthesiology.

[13]  R. Szymusiak,et al.  Brain structures and mechanisms involved in the generation of NREM sleep: focus on the preoptic hypothalamus. , 2001, Sleep medicine reviews.

[14]  Y. Urade,et al.  Arousal effect of orexin A depends on activation of the histaminergic system , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Szymusiak,et al.  Preoptic area warming inhibits wake-active neurons in the perifornical lateral hypothalamus , 2003, Brain Research.

[16]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[17]  T. Scammell,et al.  Wake-related activity of tuberomammillary neurons in rats , 2003, Brain Research.

[18]  W. Dement,et al.  Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. , 1957, Electroencephalography and clinical neurophysiology.

[19]  P. Panula,et al.  Subcellular distribution of histamine, GABA and galanin in tuberomamillary neurons in vitro , 2003, Journal of Chemical Neuroanatomy.

[20]  J. Sleigh,et al.  Monitoring consciousness: the current status of EEG-based depth of anaesthesia monitors. , 2007, Best practice & research. Clinical anaesthesiology.

[21]  Masashi Yanagisawa,et al.  An essential role for orexins in emergence from general anesthesia , 2008, Proceedings of the National Academy of Sciences.

[22]  T. Visser,et al.  Multiple neurotransmitters in the tuberomammillary nucleus: Comparison of rat, mouse, and guinea pig , 1992, The Journal of comparative neurology.

[23]  Alan C. Evans,et al.  Brain Mechanisms of Propofol-Induced Loss of Consciousness in Humans: a Positron Emission Tomographic Study , 1999, The Journal of Neuroscience.

[24]  Michael T Alkire,et al.  Thalamic Microinjection of Nicotine Reverses Sevoflurane-induced Loss of Righting Reflex in the Rat , 2007, Anesthesiology.

[25]  Tao Luo,et al.  Basal Forebrain Histaminergic Transmission Modulates Electroencephalographic Activity and Emergence from Isoflurane Anesthesia , 2009, Anesthesiology.

[26]  Jun Lu,et al.  Selective Activation of the Extended Ventrolateral Preoptic Nucleus during Rapid Eye Movement Sleep , 2002, The Journal of Neuroscience.

[27]  M. Jouvet,et al.  [Research on the neural structures and responsible mechanisms in different phases of physiological sleep]. , 1962, Archives italiennes de biologie.

[28]  R. Szymusiak,et al.  Sleep-promoting functions of the hypothalamic median preoptic nucleus: inhibition of arousal systems. , 2004, Archives italiennes de biologie.

[29]  B. Maciver,et al.  Synaptic Mechanisms of Thiopental‐induced Alterations in Synchronized Cortical Activity , 1996, Anesthesiology.

[30]  M. Sterman,et al.  Effect of a forebrain lesion on the polycyclic sleep-wake cycle and sleep-wake patterns in the cat , 1975, Experimental Neurology.

[31]  Ming-Fung Wu,et al.  Release of Hypocretin (Orexin) during Waking and Sleep States , 2002, The Journal of Neuroscience.

[32]  G. Dawson,et al.  Sedation and Anesthesia Mediated by Distinct GABAA Receptor Isoforms , 2003, The Journal of Neuroscience.

[33]  Alan C. Evans,et al.  Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. , 2001, Journal of neurophysiology.

[34]  M. Devor,et al.  Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital , 2001, Pain.

[35]  Thomas E. Scammell,et al.  The sleep switch: hypothalamic control of sleep and wakefulness , 2001, Trends in Neurosciences.

[36]  T. Sejnowski,et al.  Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. , 2003, Physiological reviews.

[37]  A. Braun,et al.  Regional cerebral blood flow throughout the sleep- wake cycle , 1997 .

[38]  R. McCarley,et al.  Activation of Ventrolateral Preoptic Neurons During Sleep , 1996, Science.

[39]  B. Rosner,et al.  Neurophysiologic Effects of General Anesthetics: I. The Electroencephalogram and Sensory Evoked Responses in Man , 1973, Anesthesiology.

[40]  H. Ericson,et al.  Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain , 1991, The Journal of comparative neurology.

[41]  O. Hassani,et al.  Discharge of Identified Orexin/Hypocretin Neurons across the Sleep-Waking Cycle , 2005, The Journal of Neuroscience.

[42]  A. Braun,et al.  Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. , 1997, Brain : a journal of neurology.

[43]  T. Guo,et al.  The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway , 2002, Nature Neuroscience.

[44]  Luis de Lecea,et al.  Hypocretin-1 Modulates Rapid Eye Movement Sleep through Activation of Locus Coeruleus Neurons , 2000, The Journal of Neuroscience.

[45]  N. Franks,et al.  General anesthesia and ascending arousal pathways. , 2009, Anesthesiology.

[46]  A. Vyssotski,et al.  An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action , 2009, Proceedings of the National Academy of Sciences.

[47]  F. Jia,et al.  An extrasynaptic GABAA receptor mediates tonic inhibition in thalamic VB neurons. , 2005, Journal of neurophysiology.

[48]  H. Haas,et al.  Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons , 2004, The European journal of neuroscience.

[49]  C. Economo SLEEP AS A PROBLEM OF LOCALIZATION , 1930 .

[50]  J. Rossier,et al.  Identification of sleep-promoting neurons in vitro , 2000, Nature.

[51]  G. Tononi,et al.  Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness , 2010, Proceedings of the National Academy of Sciences.

[52]  Emmanuel Mignot,et al.  The Sleep Disorder Canine Narcolepsy Is Caused by a Mutation in the Hypocretin (Orexin) Receptor 2 Gene , 1999, Cell.

[53]  G. Tononi,et al.  Breakdown of Cortical Effective Connectivity During Sleep , 2005, Science.

[54]  Dennis McGinty,et al.  Sleep–waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats , 1998, Brain Research.

[55]  K. Shimoji,et al.  Halothane-induced hyperpolarization and depression of postsynaptic potentials of guinea pig thalamic neurons in vitro , 1992, Brain Research.

[56]  C. Saper,et al.  Fos Expression in Orexin Neurons Varies with Behavioral State , 2001, The Journal of Neuroscience.

[57]  N. Kleitman,et al.  Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. , 1953, Science.

[58]  S. Aalto,et al.  Effects of Xenon Anesthesia on Cerebral Blood Flow in Humans: A Positron Emission Tomography Study , 2007, Anesthesiology.

[59]  N. Franks General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal , 2008, Nature Reviews Neuroscience.

[60]  M. Sterman,et al.  Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. , 1962, Experimental neurology.

[61]  F. Bremer,et al.  Cerebral hypnogenic centers , 1977, Annals of neurology.

[62]  T. Kikuchi,et al.  Age‐related modifications of effects of ketamine and propofol on rat hippocampal acetylcholine release studied by in vivo brain microdialysis , 2000, Acta anaesthesiologica Scandinavica.

[63]  Y. Yamamoto,et al.  Interactions Between Neuronal Histamine and Halothane Anesthesia in Rats , 1997, Journal of neurochemistry.

[64]  H. Ohtsu,et al.  Anatomical, Physiological, and Pharmacological Characteristics of Histidine Decarboxylase Knock-Out Mice: Evidence for the Role of Brain Histamine in Behavioral and Sleep–Wake Control , 2002, The Journal of Neuroscience.

[65]  J. Lambert,et al.  Extrasynaptic GABAA Receptors of Thalamocortical Neurons: A Molecular Target for Hypnotics , 2005, The Journal of Neuroscience.

[66]  R. Szymusiak,et al.  Subregional organization of preoptic area /anterior hypothalamic projections to arousal‐related monoaminergic cell groups , 2001, The Journal of comparative neurology.

[67]  Masanori Sekimoto,et al.  Activity of Midbrain Reticular Formation and Neocortex during the Progression of Human Non-Rapid Eye Movement Sleep , 1999, The Journal of Neuroscience.

[68]  C. Saper,et al.  Effect of Lesions of the Ventrolateral Preoptic Nucleus on NREM and REM Sleep , 2000, The Journal of Neuroscience.

[69]  B. Antkowiak,et al.  Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABAA receptor‐mediated inhibition , 2005, The European journal of neuroscience.

[70]  R. Lydic,et al.  Pontine Cholinergic Mechanisms Modulate the Cortical Electroencephalographic Spindles of Halothane Anesthesia , 1996, Anesthesiology.

[71]  M. Jouvet,et al.  A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats , 1989, Brain Research.

[72]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[73]  Anthony G. Hudetz,et al.  Burst Activation of the Cerebral Cortex by Flash Stimuli during Isoflurane Anesthesia in Rats , 2007, Anesthesiology.

[74]  E. Puil,et al.  Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. , 1999, Journal of neurophysiology.

[75]  C. Saper,et al.  Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats. , 2004, Sleep.

[76]  H. Haas,et al.  Orexin/Hypocretin Excites the Histaminergic Neurons of the Tuberomammillary Nucleus , 2001, The Journal of Neuroscience.

[77]  Jian-Sheng Lin,et al.  Neuronal Activity of Histaminergic Tuberomammillary Neurons During Wake–Sleep States in the Mouse , 2006, The Journal of Neuroscience.

[78]  E R John,et al.  Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. , 2001, British journal of anaesthesia.

[79]  B. Antkowiak,et al.  General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[80]  M. Modirrousta,et al.  Gabaergic neurons with α2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep , 2004, Neuroscience.

[81]  K. Eguchi,et al.  Convergence of sleep-wakefulness subsystems onto single neurons in the region of cat's solitary tract nucleus. , 1980, Archives italiennes de biologie.

[82]  C. Saper,et al.  Concomitant loss of dynorphin, NARP, and orexin in narcolepsy , 2005, Neurology.

[83]  T. Sloan,et al.  Anesthetic effects on electrophysiologic recordings. , 1998, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[84]  M. Maze,et al.  The Involvement of Hypothalamic Sleep Pathways in General Anesthesia: Testing the Hypothesis Using the GABAA Receptor β3N265M Knock-In Mouse , 2009, The Journal of Neuroscience.