Transformation Toughening in Zirconia‐Containing Ceramics

The recognition of the potential for enhanced fracture toughness that can be derived from controlled, stress-activated tetragonal (t) to monoclinic (m) transformation in ZrO2-based ceramics ushered in a new era in the development of the mechanical properties of engineering ceramics and provided a major impetus for broader-ranging research into the toughening mechanisms available to enhance the fracture properties of brittle-matrix materials. ZrO2-based systems have remained a major focal point for research as developments in understanding of the crystallography of the t→m transformation have led to more-complete descriptions of the origins of transformation toughening and definition of the features required of a transformation-toughening system. In parallel, there have been significant advances in the design and control of microstructure required to optimize mechanical properties in materials developed commercially. This review concentrates on the science of the t→m transformation in ZrO2 and its application in the modeling of transformation-toughening behavior, while also summarizing the microstructural control needed to use the benefits in ZrO2-toughened ceramics.

[1]  K. K. Srivastava,et al.  Martensitic transformation in zirconia , 1974 .

[2]  Morris Cohen,et al.  Criterion for the action of applied stress in the martensitic transformation , 1953 .

[3]  R. Hannink,et al.  Precipitation During Controlled Cooling of Magnesia‐Partially‐Stabilized Zirconia , 1986 .

[4]  R. Garvie,et al.  Stabilization of the tetragonal structure in zirconia microcrystals , 1978 .

[5]  N. Claussen Transformation-Toughened Ceramics (TTC) , 1984 .

[6]  M. Swain,et al.  Relationship between Fracture. Toughness and Phase Assemblage in Mg‐PSZ , 1994 .

[7]  R. Steinbrech Toughening mechanisms for ceramic materials , 1992 .

[8]  M. Swain R‐Curve Behavior and Thermal Shock Resistance of Ceramics , 1990 .

[9]  T. Yen,et al.  Transmission Electron Microscopic Observation of the Martensitic Phase Transformation in Tetragonal ZrO2 , 1986 .

[10]  John W. Hutchinson,et al.  Microcrack toughening in alumina/zirconia , 1987 .

[11]  R. A. Miller,et al.  Phase stability in plasma-sprayed, partially stabilized zirconia-yttria , 1981 .

[12]  Michael V. Swain,et al.  Metastability of the martensitic transformation in a 12 mol% ceria-zirconia alloy; I, deformation and fracture observations , 1989 .

[13]  M. Tada,et al.  Structural Study on the Cubic to Tetragonal Transformation in Arc-melted ZrO 2 -3 mol%Y 2 O 3 , 1986 .

[14]  R. T. Pascoe,et al.  Microstructural Changes During Isothermal Aging of a Calcia Partially Stabilized Zirconia Alloy , 1990 .

[15]  C. M. Wayman,et al.  Introduction to the crystallography of martensitic transformations , 1964 .

[16]  A. Atkins Elastic and plastic fracture , 1985 .

[17]  A. Heuer,et al.  Stability of Tetragonal ZrO2 Particles in Ceramic Matrices , 1982 .

[18]  Masahiko Shimada,et al.  Transformation of Yttria‐Doped Tetragonal ZrO2 Polycrystals by Annealing in Water , 1985 .

[19]  D. J. Green Transformation Toughening Of Ceramics , 1988 .

[20]  Jan-Fong Jue,et al.  Ferroelastic Domain Switching in Tetragonal Zirconia Single Crystals—Microstructural Aspects , 1991 .

[21]  M. Swain,et al.  Stress–Strain Behavior of Alumina, Magnesia‐Partially‐Stabilized Zirconia, and Duplex Ceramics and Its Relevance for Flaw Resistance, KR‐Curve Behavior, and Thermal Shock Behavior , 1992 .

[22]  S. Antolovich,et al.  An experimental investigation of the fracture characteristics of trip alloys , 1972 .

[23]  Tsugio Sato,et al.  Transformation of Yttria‐Doped Tetragonal ZrO2 Poly crystals by Annealing under Controlled Humidity Conditions , 1985 .

[24]  B. I. Davis,et al.  Structural ceramics based on Si_3N_4–ZrO_2(+ Y_2O_3) compositions , 1987 .

[25]  R. Hannink,et al.  Fracture Mechanics Study of a Transformation Toughened Zirconia Alloy in the CaO-ZrO2 System , 1980 .

[26]  J. E. Bailey The monoclinic-tetragonal transformation and associated twinning in thin films of zirconia , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[27]  D. Shetty,et al.  Role of autocatalytic transformation in zone shape and toughening of CERIA-tetragonal-zirconia-alumina (CE-TZP/Al2O3) composites. (Reannouncement with new availability information) , 1991 .

[28]  M. Swain,et al.  Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals , 1985 .

[29]  L. Rose,et al.  Transformation zone shape in ceriapartially-stabilized zirconia , 1988 .

[30]  J. Lambropoulos Effect of nucleation on transformation toughening , 1986 .

[31]  B. Budiansky,et al.  Steady-state crack growth in supercritically transforming materials , 1988 .

[32]  Keiji Kobayashi Optical and EPR Studies of Redox Interactions of Polyvalent Ions (Cr, Cu) in Glass , 1976 .

[33]  Gregory B Olson,et al.  Transformation plasticity and toughening , 1996 .

[34]  A. Evans Perspective on the Development of High‐Toughness Ceramics , 1990 .

[35]  P. Meijers,et al.  EFFECT OF TRANSFORMATION-INDUCED SHEAR STRAINS ON CRACK GROWTH IN ZIRCONIA- CONTAINING CERAMICS , 1994 .

[36]  A. Virkar Role of Ferroelasticity in Toughening of Zirconia Ceramics , 1998 .

[37]  R. M. Cannon,et al.  Toughening of brittle solids by martensitic transformations , 1986 .

[38]  H. G. Scott,et al.  Phase relationships in the zirconia-yttria system , 1975 .

[39]  M. Swain,et al.  Relation of transformation temperature to the fracture toughness of transformation-toughened ceramics , 1987 .

[40]  R. Stevens,et al.  Tetragonal zirconia polycrystal (TZP)—A review , 1987 .

[41]  F. Lange Transformation toughening , 1982 .

[42]  P. M. Kelly,et al.  Crystallography of stress-induced martensitic transformations in partially stabilized zirconia , 1986 .

[43]  E. Ryshkewitch Oxide Ceramics: Physical Chemistry and Technology; , 1960 .

[44]  A. Heuer,et al.  Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals , 1998 .

[45]  M. Hayakawa,et al.  Structural study on the tetragonal to monoclinic transformation in arc-melted ZrO2-2mol.%Y2O3—II. Quantitative analysis , 1989 .

[46]  M. Rühle,et al.  Twin Boundaries in Monoclinic ZrO2 Particles Confined in a Mullite Matrix , 1983 .

[47]  L. Rose The size of the transformed zone during steady-state cracking in transformation-toughened materials , 1986 .

[48]  P. Kelly,et al.  The Tetragonal to Monoclinic Martensitic Transformation in Zirconia , 1998 .

[49]  A. Evans,et al.  Transformation Toughening: An Overview , 1986 .

[50]  A. Heuer,et al.  Microstructural Development in MgO‐Partially Stabilized Zirconia (Mg‐PSZ) , 1979 .

[51]  M. Hayakawa,et al.  Strain Analysis of the Herringbone Structures Observed in ZrO2 Alloys , 1991 .

[52]  J. Lankford Plastic Deformation of Partially Stabilized Zirconia , 1983 .

[53]  M. Rühle,et al.  Ferroelasticity of t'-ZrO2 , 1993 .

[54]  John W. Hutchinson,et al.  Continuum theory of dilatant transformation toughening in ceramics , 1983 .

[55]  J. Turnbull,et al.  Influence of Irradiation Temperature, Burnup, and Fuel Composition on Gas Pressure (Xe, Kr, CO, CO2) in Coated Particle Fuels , 1976 .

[56]  I. Chen,et al.  Effect of Dopants on Zirconia Stabilization—An X‐ray Absorption Study: III, Charge‐Compensating Dopants , 1994 .

[57]  Anthony G. Evans,et al.  Mechanics of Transformation‐Toughening in Brittle Materials , 1982 .

[58]  N. Claussen Fracture Toughness of Al2O3 with an Unstabilized ZrO2Dispersed Phase , 1976 .

[59]  S. Antolovich,et al.  On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels , 1971 .

[60]  W. Kriven Possible Alternative Transformation Tougheners to Zirconia: Crystallographic Aspects , 1988 .

[61]  D. Marshall Design of high-toughness laminar zirconia composites , 1992 .

[62]  R. McMeeking Effective Transformation Strain in Binary Elastic Composites , 1986 .

[63]  宗宮 重行,et al.  Science and technology of zirconia III , 1988 .

[64]  I. Chen Model of Transformation Toughening in Brittle Materials , 1991 .

[65]  A. Heuer,et al.  On a martensitic phase transformation in zirconia (ZrO2)—II. Crystallographic aspects , 1973 .

[66]  Y. Mai,et al.  Effects of grain size and specimen geometry on the transformation and R-curve behaviour of 9Ce-TZP ceramics , 1994, Journal of Materials Science.

[67]  A. Heuer,et al.  In Situ Martensitic Transformation in a Ternary MgO‐Y2O3‐ZrO2 Alloy: I, Transformation in Tetragonal ZrO2 Grains , 1988 .

[68]  Masahiko Shimada,et al.  Strength, fracture toughness and Vickers hardness of CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP) , 1985 .

[69]  V. F. Zackay,et al.  Fracture and fractography of metastable austenites , 1971 .

[70]  I-Wei Chen,et al.  Implications of Transformation Plasticity in ZrO2-Containing Ceramics: I, Shear and Dilatation Effects , 1986 .

[71]  I. Chen,et al.  Effect of Dopants on Zirconia Stabilization—An X‐ray Absorption Study: I, Trivalent Dopants , 1994 .

[72]  Michael V. Swain,et al.  Metastability of the Martensitic Transformation in a 12 mol% Ceria‐Zirconia Alloy: II, Grinding Studies , 1989 .

[73]  T. Shigematsu,et al.  Martensitic Transformations in Zirconia Ceramics , 1992 .

[74]  A. Heuer,et al.  Precipitation in Partially Stabilized Zirconia , 1975 .

[75]  P. Becher Slow crack growth behavior in transformation-toughened Al2O3-ZrO2(Y2O3) ceramics , 1983 .

[76]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[77]  B. Budiansky,et al.  Crack-growth resistance in transformation-toughened ceramics , 1989 .

[78]  A. Evans,et al.  Transformation-toughening in partially-stabilized zirconia (PSZ) , 1979 .

[79]  D. Shetty,et al.  Transformation Plasticity and Toughening in CeO2‐Partially‐Stabilized Zirconia–Alumina (Ce‐TZP/Al2O3) Composites Doped with MnO , 1992 .

[80]  Tianshun Liu Characterization of Three-Dimensional Through-Thickness Transformation Zone in 9-mol%-Ce–TZP Ceramics , 1994 .

[81]  M. Hayakawa,et al.  Crystallographic analysis of the monoclinic herringbone structure in an arc-melted ZrO2-2 mol% Y2O3 alloy , 1990 .

[82]  E. Kisi,et al.  Neutron Diffraction Observations of Ferroelastic Domain Switching and Tetragonal‐to‐Monoclinic Transformation in Ce‐TZP , 1997 .

[83]  L. Rose The mechanics of transformation toughening , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[84]  Anil V. Virkar,et al.  Ferroelastic Domain Switching as a Toughening Mechanism in Tetragonal Zirconia , 1986 .

[85]  M. Swain,et al.  Thermal Shock Behavior of Duplex Ceramics , 1991 .

[86]  J. Knott,et al.  Fundamentals of Fracture Mechanics , 2008 .

[87]  K. Tsukuma Mechanical properties and thermal stability of CeO/sub 2/ containing tetragonal zirconia polycrystals , 1986 .

[88]  J. Lambropoulos Shear, shape and orientation effects in transformation toughening , 1986 .

[89]  A. Heuer,et al.  On a martensitic phase transformation in zirconia (ZrO2)—I. Metallographic evidence , 1972 .

[90]  D. Marshall Strength Characteristics of Transformation‐Toughened Zirconia , 1986 .

[91]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[92]  R. Garvie THE OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT , 1965 .

[93]  R. Ritchie Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding☆ , 1988 .

[94]  R. Hannink,et al.  Growth morphology of the tetragonal phase in partially stabilized zirconia , 1978 .

[95]  D. Shetty,et al.  Transformation yielding, plasticity and crack-growth-resistance (R-curve) behaviour of CeO2-TZP , 1990 .

[96]  D. Shetty,et al.  Transformation Zone Shape, Size, and Crack‐Growth‐Resistance [R‐Curve] Behavior of Ceria‐Partially‐Stabilized Zirconia Polycrystals , 1989 .

[97]  M. Swain,et al.  A mode of deformation in partially stabilized zirconia , 1981 .

[98]  B. Budiansky,et al.  On the mechanics of stress-induced phase transformation in zirconia , 1993 .

[99]  I. Chen,et al.  Transformation Plasticity and Transformation Toughening in Mg-PSZ and Ce-TZP , 1986 .

[100]  F. F. Lange,et al.  Transformation toughening , 1982 .

[101]  P. Sarkar,et al.  Structural Ceramic Microlaminates by Electrophoretic Deposition , 1992 .

[102]  Tapan K. Gupta,et al.  Stabilization of tetragonal phase in polycrystalline zirconia , 1977 .

[103]  Siegfried Schmauder,et al.  Significance of Internal Stresses for the Martensitic Transformation in Yttria‐Stabilized Tetragonal Zirconia Polycrystals During Degradation , 1986 .

[104]  I. Chen,et al.  Transformation Plasticity of CeO2‐Stabilized Tetragonal Zirconia Polycrystals: II, Pseudoelasticity and Shape Memory Effect , 1988 .

[105]  N. Claussen Microstructural design of zirconia-toughened ceramics (ZTC) , 1983 .

[106]  David B. Marshall,et al.  Enhanced Fracture Toughness in Layered Microcomposites of Ce‐ZrO2 and Al2O3 , 1991 .

[107]  L. Truskinovsky,et al.  Shear induced transformation toughening in ceramics , 1994 .

[108]  L. Rose,et al.  Strength Limitations of Transformation-Toughened Zirconia Alloys , 1986 .

[109]  M. Swain,et al.  Progress in Transformation Toughening of Ceramics , 1994 .

[110]  Robert M. McMeeking,et al.  Numerical results for transformation toughening in ceramics , 1990 .

[111]  K. Matsui,et al.  Phase Transformation of Zirconia Ceramics by Annealing in Hot Water (Part 2) , 1999 .

[112]  T. Michalske,et al.  A Molecular Mechanism for Stress Corrosion in Vitreous Silica , 1983 .

[113]  K. Bowman,et al.  Transformation Textures in Zirconia , 1993 .

[114]  S. Buljan,et al.  Optical and X‐Ray Single Crystal Studies of the Monoclinic ⇌ Tetragonal Transition in ZrO2 , 1976 .

[115]  P. Kelly,et al.  A Model of Stress Assisted Transformation in Mg-PSZ and Ce-TZP , 1998 .

[116]  K. Hwang,et al.  A micromechanics constitutive model of transformation plasticity with shear and dilatation effect , 1991 .

[117]  T. Shigematsu,et al.  Bainite-like Transformation in Zirconia Ceramics , 1991 .

[118]  Anthony G. Evans,et al.  REVIEW—Transformation Toughening in Ceramics: Martensitic Transformations in Crack‐Tip Stress Fields , 1980 .

[119]  M. Swain,et al.  Fracture Toughness of MgO‐Partially‐Stabilized ZrO2 Specimens with KR‐Curve Behavior from Transformation Toughening , 1986 .

[120]  N. Claussen,et al.  Toughening of Ceramic Composites by Oriented Nucleation of Microcracks , 1976 .

[121]  M. Yoshimura,et al.  Role of H2O on the degradation process of Y-TZP , 1987 .

[122]  Robert O. Ritchie,et al.  Crack‐Tip Transformation Zones in Toughened Zirconia , 1990 .

[123]  Ww Gerberich Ww,et al.  INTERACTIONS BETWEEN CRACK GROWTH AND STRAIN-INDUCED TRANSFORMATION , 1969 .

[124]  R. Hannink,et al.  Crystallography of the Tetragonal to Monoclinic Transformation in MgO‐Partially‐Stabilized Zirconia , 1986 .

[125]  Tadahiko Watanahe,et al.  Mechanical Properties of Hot‐Pressed TiB2‐ZrO2 Composites , 1985 .

[126]  R. Hannink Microstructural development of sub-eutectoid aged MgO-ZrO2 alloys , 1983 .

[127]  M. Hayakawa,et al.  Structural study on the tetragonal to monoclinic transformation in arc-melted ZrO2-2mol.%Y2O3—I. Experimental observations , 1989 .

[128]  M. Swain Inelastic deformation of MgPSZ and its significance for strength-toughness relationship of zirconia toughened ceramics , 1985 .

[129]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[130]  C. Grain Phase Relations in the ZrO2‐MgO System , 1967 .

[131]  D. Marshall,et al.  Transformation Zone Shape Effects on Crack Shielding in Ceria‐Partially‐Stabilized Zirconia (Ce‐TZP)–Alumina Composites , 1992 .

[132]  D. Stump The role of shear stresses and shear strains in transformation-toughening , 1991 .

[133]  A. Heuer,et al.  Eutectoid Decomposition of MgO‐Partially‐Stabilized ZrO2 , 1987 .

[134]  B. Muddle,et al.  The Tetragonal to Monoclinic Transformation in Ceria-Zirconia , 1991 .

[135]  Arthur H. Heuer,et al.  Transformation Toughening in ZrO2‐Containing Ceramics , 1987 .

[136]  J. Drennan,et al.  Effect of SrO Additions on the Grain‐Boundary Microstructure and Mechanical Properties of Magnesia‐Partially‐Stabilized Zirconia , 1986 .

[137]  A. Heuer,et al.  Mechanisms of Toughening Partially Stabilized Zirconia (PSZ) , 1977 .

[138]  D. Stump Autocatalysis: The self-induced growth of martensitic phase transformations in ceramics , 1994 .

[139]  M. Swain,et al.  KR‐Curve Behavior of Duplex Ceramics , 1991 .

[140]  Frederick F. Lange,et al.  Degradation During Aging of Transformation‐Toughened ZrO2‐Y2O3 Materials at 250°C , 1986 .

[141]  Arthur H. Heuer,et al.  Science and Technology of Zirconia , 1981 .

[142]  W. Kriven,et al.  MARTENSITE CRYSTALLOGRAPHY OF TETRAGONAL ZIRCONIA. , 1981 .

[143]  Michael V. Swain,et al.  Grain‐Size‐Dependent Transformation Behavior in Polycrystalline Tetragonal Zirconia , 1992 .

[144]  C. Galiotis,et al.  Phase transformation around indentations in zirconia , 1992 .

[145]  I-Wei Chen,et al.  Transformation Plasticity of CeO2‐Stabilized Tetragonal Zirconia Polycrystals: I, Stress Assistance and Autocatalysis , 1988 .