Convergence analysis of the extended Krylov subspace method for the Lyapunov equation

The extended Krylov subspace method has recently arisen as a competitive method for solving large-scale Lyapunov equations. Using the theoretical framework of orthogonal rational functions, in this paper we provide a general a priori error estimate when the known term has rank-one. Special cases, such as symmetric coefficient matrix, are also treated. Numerical experiments confirm the proved theoretical assertions.

[1]  A density problem for orthogonal rational functions , 1999 .

[2]  Lothar Reichel,et al.  Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..

[3]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[4]  G. Goluzin Geometric theory of functions of a complex variable , 1969 .

[5]  Eugene L. Wachspress,et al.  Solution of lyapunov equations by alternating direction implicit iteration , 1991 .

[6]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[7]  P. K. Suetin Series of Faber polynomials , 1998 .

[8]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[9]  Michel Crouzeix,et al.  Numerical range and functional calculus in Hilbert space , 2007 .

[10]  P. Lancaster Explicit Solutions of Linear Matrix Equations , 1970 .

[11]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[12]  Dieter Gaier Regular Article: The Faber Operator and its Boundedness , 1999 .

[13]  Matthew He Approximation of Rational Functions on Complex Domain , 1984 .

[14]  Y. Saad,et al.  Numerical solution of large Lyapunov equations , 1989 .

[15]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[16]  Valeria Simoncini,et al.  A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..

[17]  S. Ellacott ON THE FABER TRANSFORM AND EFFICIENT NUMERICAL RATIONAL APPROXIMATION , 1983 .

[18]  Lothar Reichel,et al.  The extended Krylov subspace method and orthogonal Laurent polynomials , 2009 .

[19]  Adhemar Bultheel,et al.  Algorithm 882: Near-Best Fixed Pole Rational Interpolation with Applications in Spectral Methods , 2008, TOMS.

[20]  Satoru Takenaka On the Orthogonal Functions and a New Formula of Interpolation , 1925 .

[21]  Congratulations to Professor K. Itô , 2007 .

[22]  Adhemar Bultheel,et al.  Orthogonal Rational Functions , 1999, Cambridge monographs on applied and computational mathematics.

[23]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[24]  I. Jaimoukha,et al.  Krylov subspace methods for solving large Lyapunov equations , 1994 .

[25]  Bernhard Beckermann,et al.  Image numérique, GMRES et polynômes de Faber , 2005 .

[26]  K. Jbilou,et al.  Projection methods for large Lyapunov matrix equations , 2006 .

[27]  Valeria Simoncini,et al.  A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..

[28]  R. Langer Interpolation and Approximation by Rational Functions in the Complex Domain , 1937 .

[29]  S. Godunov Modern Aspects of Linear Algebra , 1998 .

[30]  Vladimir Druskin,et al.  Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..

[31]  Marlis Hochbruck,et al.  Preconditioned Krylov Subspace Methods for Lyapunov Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..

[32]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[33]  Valeria Simoncini,et al.  Convergence Analysis of Projection Methods for the Numerical Solution of Large Lyapunov Equations , 2009, SIAM J. Numer. Anal..