Two temporal second-order H1-Galerkin mixed finite element schemes for distributed-order fractional sub-diffusion equations

In this paper, a special point is found for the interpolation approximation of the distributed order fractional derivatives to achieve at least second-order accuracy. Then, two H1-Galerkin mixed finite element schemes combined with the higher accurate interpolation approximation are introduced and analyzed to solve the distributed order fractional sub-diffusion equations. The stable results, which just depend on initial value and source item, are derived. Some a priori estimates with optimal order of convergence both for the unknown function and its flux are established rigorously. It is shown that the H1-Galerkin mixed finite element approximations have the same rates of the convergence as in the classical mixed finite element method, but without LBB consistency condition and quasiuniformity requirement on the finite element mesh. Finally, some numerical experiments are presented to show the efficiency and accuracy of H1-Galerkin mixed finite element schemes.

[1]  Y. Sinai The Limiting Behavior of a One-Dimensional Random Walk in a Random Medium , 1983 .

[2]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[3]  A. K. Pani,et al.  An H 1 -Galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations , 1998 .

[4]  Haitao Che,et al.  H1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations , 2013 .

[5]  Francesco Mainardi,et al.  Some aspects of fractional diffusion equations of single and distributed order , 2007, Appl. Math. Comput..

[6]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[7]  Neville J. Ford,et al.  An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time , 2015 .

[8]  T. Geveci On the application of mixed finite element methods to the wave equations , 1988 .

[9]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[10]  I. Turner,et al.  Time fractional advection-dispersion equation , 2003 .

[11]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.

[12]  I. M. Sokolov,et al.  Fractional Fokker-Planck equation for ultraslow kinetics , 2003 .

[13]  Zhi-zhong Sun,et al.  Two unconditionally stable and convergent difference schemes with the extrapolation method for the one‐dimensional distributed‐order differential equations , 2016 .

[14]  Richard L. Magin,et al.  Solving the fractional order Bloch equation , 2009 .

[15]  W. Wyss,et al.  THE FRACTIONAL BLACK-SCHOLES EQUATION , 2000 .

[16]  Kai Diethelm,et al.  Numerical analysis for distributed-order differential equations , 2009 .

[17]  Katja Lindenberg,et al.  Reaction front in an A+B-->C reaction-subdiffusion process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  S. Wearne,et al.  Fractional cable models for spiny neuronal dendrites. , 2008, Physical review letters.

[19]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[20]  Zhaojie Zhou An H1-Galerkin mixed finite element method for a class of heat transport equations☆ , 2010 .

[21]  Amiya K. Pani An H 1 -Galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations , 1998 .

[22]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[23]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[24]  V. Thomée,et al.  Error estimates for some mixed finite element methods for parabolic type problems , 1981 .

[25]  Ying Chen,et al.  Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models , 2016, J. Comput. Phys..

[26]  Ralf Metzler,et al.  Boundary value problems for fractional diffusion equations , 2000 .

[27]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[28]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[29]  Zhi-Zhong Sun,et al.  A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..

[30]  Hai-Wei Sun,et al.  Fourth order finite difference schemes for time-space fractional sub-diffusion equations , 2016, Comput. Math. Appl..

[31]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[32]  Wei Liu,et al.  A two-grid expanded mixed element method for nonlinear non-Fickian flow model in porous media , 2014, Int. J. Comput. Math..

[33]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[34]  Zhi-Zhong Sun,et al.  Some high-order difference schemes for the distributed-order differential equations , 2015, J. Comput. Phys..

[35]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[36]  G. Fairweather,et al.  H1‐Galerkin mixed finite element methods for parabolic partial integro‐differential equations , 2002 .

[37]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[38]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[40]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[41]  Santos B. Yuste,et al.  Subdiffusion-limited A+A reactions. , 2001 .

[42]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[43]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[44]  T. Dupont,et al.  A Priori Estimates for Mixed Finite Element Methods for the Wave Equation , 1990 .

[45]  Zhi-Zhong Sun,et al.  The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for Solving the Time Multi-term and Distributed-Order Fractional Sub-diffusion Equations , 2017, J. Sci. Comput..