Novel Commercial Aquaporin Flat-sheet Membrane for Forward Osmosis

Aquaporin proteins are of great interest to the membrane science community because of their unique characteristics of high water permeability and perfect molecular selectivity. Although these characteristics make aquaporins particularly valuable for desalination applications, none of these aquaporin-based membrane designs has been produced at a large scale. In this work, we report on the recently designed and commercially available Aquaporin Inside flat-sheet membrane designed for forward osmosis (FO) by Aquaporin A/S, Lyngby, Denmark. The Aquaporin Inside flat-sheet membrane is the first commercially available thin-film composite (TFC) FO membrane to incorporate aquaporin proteins into its polyamide-based selective layer. The membrane tested, which is a first-generation membrane, achieved water fluxes of 14.0 and 8.8 L m–2 h–1 with low reverse salt fluxes of 4.6 and 4.0 g m–2 h–1 in pressure-retarded osmosis (PRO) and FO modes, respectively, using 1.0 M sodium chloride as the draw solution and deionized ...

[1]  H. P. Hutchison,et al.  Diffusion coefficients for sodium and potassium chlorides in water at elevated temperatures , 1971 .

[2]  Henk J. Busscher,et al.  The effect of surface roughening of polymers on measured contact angles of liquids , 1984 .

[3]  S. Loeb,et al.  Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane , 1997 .

[4]  Gershon Wolansky,et al.  Apparent contact angles on rough surfaces: the Wenzel equation revisited , 1999 .

[5]  J. McCutcheon,et al.  Internal concentration polarization in forward osmosis: role of membrane orientation , 2006 .

[6]  M. Jensen,et al.  Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF. , 2006, Biophysical journal.

[7]  Amy E. Childress,et al.  Forward osmosis: Principles, applications, and recent developments , 2006 .

[8]  J. McCutcheon,et al.  Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis , 2006 .

[9]  Robert L McGinnis,et al.  Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance , 2006 .

[10]  Wolfgang Meier,et al.  Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z , 2007, Proceedings of the National Academy of Sciences.

[11]  Menachem Elimelech,et al.  Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes , 2008 .

[12]  C. Nielsen Biomimetic membranes for sensor and separation applications , 2009, Analytical and bioanalytical chemistry.

[13]  T. Vissing,et al.  Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[14]  Menachem Elimelech,et al.  High performance thin-film composite forward osmosis membrane. , 2010, Environmental science & technology.

[15]  Ngai Yin Yip,et al.  Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. , 2011, Environmental science & technology.

[16]  O. Geschke,et al.  Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter. , 2011, Biochemical and biophysical research communications.

[17]  Rong Wang,et al.  Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes , 2011 .

[18]  Rong Wang,et al.  Influence of monomer concentrations on the performance of polyamide-based thin film composite forwar , 2011 .

[19]  Free-standing biomimetic polymer membrane imaged with atomic force microscopy. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[20]  Menachem Elimelech,et al.  Relating performance of thin-film composite forward osmosis membranes to support layer formation and , 2011 .

[21]  Jeffrey R. McCutcheon,et al.  Electrospun nanofiber supported thin film composite membranes for engineered osmosis , 2011 .

[22]  B. Freeman,et al.  Surface modification of thin film composite membrane support layers with polydopamine: Enabling use , 2011 .

[23]  Linda Zou,et al.  Recent developments in forward osmosis : opportunities and challenges. , 2012 .

[24]  Chuyang Y. Tang,et al.  Preparation of supported lipid membranes for aquaporin Z incorporation. , 2012, Colloids and surfaces. B, Biointerfaces.

[25]  Chuyang Y. Tang,et al.  Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis , 2012 .

[26]  Menachem Elimelech,et al.  Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. , 2012, ACS applied materials & interfaces.

[27]  Xiao Hu,et al.  Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization , 2012 .

[28]  E. Hoek,et al.  Impacts of Operating Conditions and Solution Chemistry on Osmotic Membrane Structure and Performance. , 2012, Desalination.

[29]  Y. Tong,et al.  Study on water transport through a mechanically robust Aquaporin Z biomimetic membrane , 2013 .

[30]  Thomas J. Hamlin,et al.  Novel hydrophilic nylon 6,6 microfiltration membrane supported thin film composite membranes for engineered osmosis , 2013 .

[31]  Mohsen Jahanshahi,et al.  Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes , 2013 .

[32]  Chuyang Y. Tang,et al.  Desalination by biomimetic aquaporin membranes: Review of status and prospects , 2013 .

[33]  Andrea Achilli,et al.  Standard methodology for evaluating membrane performance in osmotically driven membrane processes , 2013 .

[34]  A. Armugam,et al.  Mechanically robust and highly permeable AquaporinZ biomimetic membranes , 2013 .

[35]  Ronan K. McGovern,et al.  On the potential of forward osmosis to energetically outperform reverse osmosis desalination , 2014 .

[36]  Mohsen Jahanshahi,et al.  The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application , 2014 .

[37]  A. Ismail,et al.  Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization , 2014 .

[38]  Cong-jie Gao,et al.  Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes , 2014 .

[39]  A. Ismail,et al.  A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination , 2014 .

[40]  J. McCutcheon,et al.  A new commercial thin film composite membrane for forward osmosis , 2014 .

[41]  Chuyang Y. Tang,et al.  Biomimetic aquaporin membranes coming of age , 2015 .

[42]  Jeffrey R. McCutcheon,et al.  Model thin film composite membranes for forward osmosis: Demonstrating the inaccuracy of existing structural parameter models , 2015 .

[43]  J. McCutcheon,et al.  Impact of support layer pore size on performance of thin film composite membranes for forward osmosis , 2015 .

[44]  Cong-jie Gao,et al.  Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification. , 2015, Environmental science & technology.

[45]  B. Bruggen,et al.  Use of biomimetic forward osmosis membrane for trace organics removal , 2015 .

[46]  Jeffrey R. McCutcheon,et al.  Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter , 2015 .

[47]  T. Thundat,et al.  Developing high throughput thin film composite polyamide membranes for forward osmosis treatment of SAGD produced water , 2016 .

[48]  Nhu-Ngoc Bui,et al.  Nanoparticle-embedded nanofibers in highly permselective thin-film nanocomposite membranes for forward osmosis , 2016 .

[49]  J. McCutcheon,et al.  Sulfonated polysulfone supported high performance thin film composite membranes for forward osmosis , 2016 .

[50]  Jian Zuo,et al.  Novel thin film composite forward osmosis membrane of enhanced water flux and anti-fouling property with N-[3-(trimethoxysilyl) propyl] ethylenediamine incorporated , 2016 .

[51]  J. McCutcheon,et al.  Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis , 2016 .

[52]  J. McCutcheon,et al.  Thin Film Composite Membranes for Forward Osmosis Supported by Commercial Nanofiber Nonwovens , 2017 .

[53]  Adewale Giwa,et al.  Biomimetic membranes: A critical review of recent progress , 2017 .