Multi-symplectic Runge–Kutta-type methods for Hamiltonian wave equations

The non-linear wave equation is taken as a model problem for the investigation. Different multi-symplectic reformulations of the equation are discussed. Multi-symplectic Runge-Kutta methods and multi-symplectic partitioned Runge-Kutta methods are explored based on these different reformulations. Some popular and efficient multi-symplectic schemes are collected and constructed. Stability analyses are performed for these schemes.

[1]  Theodor Meis,et al.  Numerical solution of partial differential equations , 1981 .

[2]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[3]  David R. Basco,et al.  Computational fluid dynamics - an introduction for engineers , 1989 .

[4]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[5]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[6]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[7]  T. Bridges A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  T. Bridges Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[10]  Jerrold E. Marsden,et al.  Multisymplectic geometry, covariant Hamiltonians, and water waves , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Thomas J. Bridges,et al.  Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  Sebastian Reich,et al.  Finite Volume Methods for Multi-Symplectic PDES , 2000 .

[13]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[14]  M. Qin,et al.  Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation , 2000 .

[15]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[16]  S. Reich,et al.  Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations , 2001 .

[17]  Thomas J. Bridges,et al.  Linear Instability of Solitary Wave Solutions of the Kawahara Equation and Its Generalizations , 2002, SIAM J. Math. Anal..

[18]  Thomas J. Bridges,et al.  Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework , 2002 .

[19]  Ying Liu,et al.  A novel numerical approach to simulating nonlinear Schro"dinger equations with varying coefficients , 2003, Appl. Math. Lett..

[20]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[21]  Brian E. Moore A modified equations approach for multi-symplectic integration methods. , 2003 .

[22]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[23]  GengSun,et al.  SYMPLECTIC RK METHODS AND SYMPLECTIC PRK METHODS WITH REAL EIGENVALUES , 2004 .

[24]  Jialin Hong,et al.  Spurious behavior of a symplectic integrator , 2005 .

[25]  Geng Sun,et al.  The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs , 2005, Math. Comput..

[26]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.