Adaptive Eigenvalue Computations Using Newton's Method on the Grassmann Manifold

We consider the problem of updating an invariant subspace of a Hermitian, large and struc-tured matrix when the matrix is modiied slightly. The problem can be formulated as that of computing stationary values of a certain function, with orthogonality constraints. The constraint is formulated as the requirement that the solution must be on the Grassmann manifold, and Newton's method on the manifold is used. In each Newton iteration a Sylvester equation is to be solved. We discuss the properties of the Sylvester equation and conclude that for large problems preconditioned iterative methods can be used. Preconditioning techniques are discussed. Numerical examples from signal subspace computations are given, where the matrix is Toeplitz and we compute a partial singular value decomposition corresponding to the largest singular values. Further we solve numerically the problem of computing the smallest eigenvalues and corresponding eigenvectors of a large sparse matrix that has been slightly modiied.

[1]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[2]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[3]  Jeffrey M. Speiser Signal Processing Computational Needs , 1986, Optics & Photonics.

[4]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[5]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[6]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[8]  L. Reichel,et al.  Krylov-subspace methods for the Sylvester equation , 1992 .

[9]  F. Jolesz,et al.  Dynamically adaptive MRI with encoding by singular value decomposition , 1994, Magnetic resonance in medicine.

[10]  J. Nagy,et al.  DISPLACEMENT PRECONDITIONER FOR TOEPLITZ LEAST SQUARES ITERATIONS , 1994 .

[11]  R. Freund,et al.  Software for simplified Lanczos and QMR algorithms , 1995 .

[12]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[13]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[14]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1994, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[15]  Valeria Simoncini,et al.  Arnoldi-Riccati method for large eigenvalue problems , 1996 .

[16]  P. Strobach Low-rank adaptive filters , 1996, IEEE Trans. Signal Process..

[17]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[18]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[19]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[20]  G. Golub,et al.  Eigenvalue perturbation and generalized Krylov subspace method , 1998 .

[21]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[22]  A. Wathen,et al.  Minimum residual methods for augmented systems , 1998 .

[23]  Gene H. Golub,et al.  On the Homotopy Method for Perturbed Symmetric Generalized Eigenvalue Problems , 1998, SIAM J. Sci. Comput..

[24]  H. V. D. Vorst,et al.  EFFICIENT EXPANSION OF SUBSPACES IN THE JACOBI-DAVIDSON METHOD FOR STANDARD AND GENERALIZED EIGENPROBLEMS , 1998 .

[25]  James G. Nagy,et al.  A total least squares method for Toeplitz systems of equations , 1998 .

[26]  J. Fattebert A block Rayleigh quotient iteration with local quadratic convergence. , 1998 .

[27]  Michael K. Ng,et al.  Galerkin Projection Methods for Solving Multiple Linear Systems , 1999, SIAM J. Sci. Comput..