Homotopy Classes for Stable Periodic and Chaotic¶Patterns in Fourth-Order Hamiltonian Systems
暂无分享,去创建一个
J. Kwapisz | W. Kalies | J. Kwapisz | W.D. Kalies | J.B. VandenBerg | R.C.A.M. VanderVorst | R. Vandervorst | W. D. Kalies | J. B. VandenBerg
[1] J. Kwapisz. Uniqueness of the Stationary Wave for the Extended Fisher-Kolmogorov Equation , 2000 .
[2] William D. Kalies,et al. MULTITRANSITION HOMOCLINIC AND HETEROCLINIC SOLUTIONS OF THE EXTENDED FISHER-KOLMOGOROV EQUATION , 1996 .
[3] William Fulton. Algebraic Topology: A First Course , 1995 .
[4] G. J. van den Berg,et al. Stable patterns for fourth-order parabolic equations , 2002 .
[5] R. Ghrist,et al. Morse theory on spaces of braids and Lagrangian dynamics , 2001, math/0105082.
[6] J. Kwapisz,et al. Homotopy Classes for Stable Connections between Hamiltonian Saddle-Focus Equilibria , 1998 .
[7] P. Rabinowitz. Heteroclinics for a Hamiltonian system of double pendulum type , 1997 .
[8] Philip Boyland,et al. Lagrangian systems on hyperbolic manifolds , 1996, Ergodic Theory and Dynamical Systems.
[9] T. Wanner,et al. Slow motion in higher-order systems and G-convergence in one space dimension , 2001 .
[10] Harold Marston Morse. A fundamental class of geodesics on any closed surface of genus greater than one , 1924 .
[11] Closed characteristics of fourth-order twist systems via braids , 2000 .
[12] Jan Bouwe van den Berg. Uniqueness of Solutions for the Extended Fisher-kolmogorov Equation , 1998 .
[13] Jan Bouwe van den Berg,et al. The Phase-plane Picture for a Class of Fourth-order Conservative Differential Equations , 2000 .
[14] Josephus Hulshof,et al. Travelling Waves for Fourth Order Parabolic Equations , 2001, SIAM J. Math. Anal..
[15] Eric Schechter,et al. Handbook of Analysis and Its Foundations , 1996 .
[16] V. Bangert. Mather Sets for Twist Maps and Geodesics on Tori , 1988 .
[17] J. B. Berg. Uniqueness of solutions for the extended Fisher-Kolmogorov equation , 1998 .