A rapidly converging domain decomposition method for the Helmholtz equation

A new domain decomposition method is introduced for the heterogeneous 2-D and 3-D Helmholtz equations. Transmission conditions based on the perfectly matched layer (PML) are derived that avoid artificial reflections and match incoming and outgoing waves at the subdomain interfaces. We focus on a subdivision of the rectangular domain into many thin subdomains along one of the axes, in combination with a certain ordering for solving the subdomain problems and a GMRES outer iteration. When combined with multifrontal methods, the solver has near-linear cost in examples, due to very small iteration numbers that are essentially independent of problem size and number of subdomains. It is to our knowledge only the second method with this property next to the moving PML sweeping method.

[1]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[2]  Marcus J. Grote,et al.  Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..

[3]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[4]  Bruno Després,et al.  A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .

[5]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[6]  B. Després,et al.  Décomposition de domaine et problème de Helmholtz , 1990 .

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[9]  A. Toselli,et al.  Some Results on Overlapping Schwarz Methods for the Helmholtz Equation Employing Perfectly Matched Layers , 1998 .

[10]  Steven G. Johnson,et al.  Notes on Perfectly Matched Layers (PMLs) , 2021, ArXiv.

[11]  Lexing Ying,et al.  A Parallel Sweeping Preconditioner for Heterogeneous 3D Helmholtz Equations , 2012, SIAM J. Sci. Comput..

[12]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[13]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[14]  Yogi A. Erlangga,et al.  Advances in Iterative Methods and Preconditioners for the Helmholtz Equation , 2008 .

[15]  F. Magoulès,et al.  An optimized Schwarz method with two‐sided Robin transmission conditions for the Helmholtz equation , 2007 .

[16]  Christophe Geuzaine,et al.  A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation , 2012, J. Comput. Phys..

[17]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[18]  F. Nataf,et al.  An optimized order 2 (OO2) method for the Helmholtz equation , 1998 .

[19]  Frédéric Nataf,et al.  Optimal Interface Conditions for Domain Decomposition Methods , 1994 .

[20]  Patrick Joly,et al.  Domain Decomposition Method for Harmonic Wave Propagation : A General Presentation , 2000 .

[21]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[22]  Frank Schmidt,et al.  Domain decomposition method for Maxwell's equations: Scattering off periodic structures , 2006, J. Comput. Phys..

[23]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[24]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .