Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst.

Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO as a promoter for this type of catalyst is still under intense debate. Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides a consistent picture of surface alloying between copper and zinc. This analysis enables a reinterpretation of the methods that have been used for the determination of the Cu surface area and provides an opportunity to independently quantify the specific Cu and Zn areas. This method may also be applied to other systems where metal-support interactions are important, and this work generally addresses the role of the carrier and the nature of the interactions between carrier and metal in heterogeneous catalysts.

[1]  K. Reuter,et al.  Chemical activity of thin oxide layers: strong interactions with the support yield a new thin-film phase of ZnO. , 2013, Angewandte Chemie.

[2]  M. Muhler,et al.  Chemische Aktivität von dünnen Oxidschichten: Starke Träger- Wechselwirkungen ergeben eine neue ZnO-Dünnfilmphase , 2013 .

[3]  R. Schlögl,et al.  Die Rolle der Oxidkomponente für die Entwicklung von Kupfer‐Komposit‐Katalysatoren zur Synthese von Methanol , 2013 .

[4]  R. Schlögl,et al.  The role of the oxide component in the development of copper composite catalysts for methanol synthesis. , 2013, Angewandte Chemie.

[5]  R. Schlögl,et al.  In‐situ‐Untersuchung von katalytischen Prozessen bei industriell relevanten Drücken: Neutronenbeugung an einem Methanolsynthesekatalysator , 2013 .

[6]  R. Schlögl,et al.  In situ study of catalytic processes: neutron diffraction of a methanol synthesis catalyst at industrially relevant pressure. , 2013, Angewandte Chemie.

[7]  G. Olah,et al.  Towards oil independence through renewable methanol chemistry. , 2013, Angewandte Chemie.

[8]  G. A. Olah Der Weg in die Unabhängigkeit vom Öl mithilfe einer Chemie auf der Basis von erneuerbarem Methanol , 2013 .

[9]  M. Bertino,et al.  Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li , 2012 .

[10]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[11]  O. Shekhah,et al.  Probing the interaction of the amino acid alanine with the surface of ZnO(1010). , 2009, Journal of colloid and interface science.

[12]  I. Chorkendorff,et al.  Transient behavior of Cu/ZnO-based methanol synthesis catalysts , 2009 .

[13]  F. Schüth,et al.  Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis , 2008 .

[14]  M. Muhler,et al.  The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. , 2006, Physical chemistry chemical physics : PCCP.

[15]  M. Muhler,et al.  Rational Catalyst Design of Methanol Synthesis Catalysts , 2004 .

[16]  Daniel A. Lidar QUANTUM COMPUTERS MADE LUCID , 2003 .

[17]  J. Wagner,et al.  In Situ Electron Energy Loss Spectroscopy Studies of Gas-Dependent Metal−Support Interactions in Cu/ZnO Catalysts , 2003 .

[18]  O. Hinrichsen,et al.  Dynamical Changes in Cu/ZnO/Al2O3 Catalysts , 2002 .

[19]  H. Brongersma,et al.  Dynamic behavior of the surface structure of Cu/ZnO/SiO2 catalysts , 2002 .

[20]  T. Fujitani,et al.  Oxidation of a Zn-deposited Cu(1 1 1) surface studied by XPS and STM , 2002 .

[21]  T. Fujitani,et al.  Formation process of a Cu-Zn surface alloy on Cu(111) investigated by scanning tunneling microscopy , 2002 .

[22]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[23]  J. Grunwaldt,et al.  In Situ Investigations of Structural Changes in Cu/ZnO Catalysts , 2000 .

[24]  H. Brongersma,et al.  Cu/ZnO and Cu/ZnO/SiO2 catalysts studied by low-energy ion scattering , 1999 .

[25]  M. Muhler,et al.  The temperature-programmed desorption of hydrogen from copper surfaces , 1999 .

[26]  H. Topsøe,et al.  On the nature of surface structural changes in Cu/ZnO methanol synthesis catalysts , 1999 .

[27]  J. Nørskov,et al.  Kinetic Implications of Dynamical Changes in Catalyst Morphology during Methanol Synthesis over Cu/ZnO Catalysts , 1997 .

[28]  T. Fujitani,et al.  Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst , 1994 .

[29]  M. Muhler,et al.  Temperature-programmed desorption of H2 as a tool to determine metal surface areas of Cu catalysts , 1992 .

[30]  S. Aksela,et al.  High-Resolution L 2,3 M 4,5 M 4,5 Auger Spectrum of Free Zinc Atoms , 1974 .

[31]  H. Friedrich,et al.  Towards stable catalysts by controlling collective properties of supported metal nanoparticles. , 2013, Nature materials.

[32]  J. Beckers,et al.  The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis , 2005 .

[33]  M. Muhler,et al.  Probing the elementary steps of the water-gas shift reaction over Cu/ZnO/Al2O3 with transient experiments , 2000 .

[34]  T. Fujitani,et al.  Model studies of methanol synthesis on copper catalysts , 1996 .