An Extension of the Karush-Kuhn-Tucker Necessity Conditions to Infinite Programming
暂无分享,去创建一个
[1] Vaithilingam Jeyakumar,et al. A Farkas lemma for difference sublinear systems and quasidifferentiable programming , 1994, Math. Program..
[2] András Prékopa,et al. On the Development of Optimization Theory , 1980 .
[3] Harold W. Kuhn,et al. Nonlinear programming: a historical view , 1982, SMAP.
[4] J. Farkas. Theorie der einfachen Ungleichungen. , 1902 .
[5] G. Bliss. Normality and Abnormality in the Calculus of Variations , 1938 .
[6] M. R. Leadbetter,et al. On the Estimation of the Probability Density, I , 1963 .
[7] R. Tapia,et al. Nonparametric Probability Density Estimation , 1978 .
[8] Marco A. López,et al. Farkas-Minkowski systems in semi-infinite programming , 1981 .
[9] P. Billingsley,et al. Convergence of Probability Measures , 1969 .
[10] M. Hestenes. Optimization Theory: The Finite Dimensional Case , 1975 .
[11] Anthony V. Fiacco,et al. Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .
[12] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[13] M. Guignard. Generalized Kuhn–Tucker Conditions for Mathematical Programming Problems in a Banach Space , 1969 .
[14] K. Parthasarathy,et al. Probability measures on metric spaces , 1967 .
[15] Michael W. Trosset,et al. Optimal shapes for kernel density estimation , 1993 .