Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS₂ and Metal/WSe₂ Heterojunctions.

Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds and therefore make more "ideal" Schottky junctions than bulk semiconductors, which produce Fermi energy pinning and recombination centers at the interface with bulk metals, inhibiting charge transfer. Here, we observe a more than 10× enhancement in the indirect band gap photoluminescence of transition metal dichalcogenides (TMDCs) deposited on various metals (e.g., Cu, Au, Ag), while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2 and subsequently recombine radiatively with minority holes in the TMDC. Since the conduction band at the K-point is 0.5 eV higher than at the Σ-point, a lower Schottky barrier exists for the Σ-point band, making electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wave functions in the metal. This enhancement in the indirect emission only occurs for thick flakes of MoS2 and WSe2 (≥100 nm) and is completely absent in monolayer and few-layer (∼10 nm) flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures, which is consistent with the hot electron injection model.

[1]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[2]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[3]  S. Cronin,et al.  Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating , 2014, Nano Research.

[4]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[5]  S. Khondaker,et al.  Photoluminescence quenching in gold - MoS2 hybrid nanoflakes , 2014, Scientific Reports.

[6]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[7]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[8]  S. Cronin,et al.  Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction , 2014 .

[9]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[10]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[11]  Andres Castellanos-Gomez,et al.  The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 , 2013, Nano Research.

[12]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[13]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[14]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[15]  D. Tománek,et al.  Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. , 2013, ACS nano.

[16]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[17]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[18]  M. Fontana,et al.  Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.

[19]  M. Armstrong,et al.  Evaluating the performance of nanostructured materials as lithium-ion battery electrodes , 2013, Nano Research.

[20]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[21]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[22]  J. R. Williams,et al.  Tunneling spectroscopy of graphene-boron-nitride heterostructures , 2011, 1108.2686.

[23]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[24]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[25]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[26]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[27]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[28]  F. Matsui,et al.  Atomic orbitals and photoelectron intensity angular distribution patterns of MoS2 valence band , 2008 .

[29]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[30]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[31]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[32]  R. T. Tung,et al.  Chemical bonding and fermi level pinning at metal-semiconductor interfaces. , 2000, Physical review letters.

[33]  Wolfram Jaegermann,et al.  Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule , 1999 .

[34]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[35]  Lince,et al.  Schottky-barrier formation on a covalent semiconductor without Fermi-level pinning: The metal-MoS2(0001) interface. , 1987, Physical review. B, Condensed matter.

[36]  F. Himpsel,et al.  Metal‐derived band gap states: Ti on GaAs(110) , 1986 .

[37]  Marshall I. Nathan,et al.  Tunneling hot‐electron transfer amplifier: A hot‐electron GaAs device with current gain , 1985 .

[38]  J. Tersoff Schottky Barrier Heights and the Continuum of Gap States , 1984 .

[39]  P. Pianetta,et al.  Photoemission study of Au Schottky-barrier formation on GaSb, GaAs, and InP using synchrotron radiation , 1978 .

[40]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[41]  C. Mee,et al.  Work function measurements on (100) and (110) surfaces of silver , 1975 .

[42]  A. J. Grant,et al.  The electrical properties and the magnitude of the indirect gap in the semiconducting transition metal dichalcogenide layer crystals , 1975 .