Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS₂ and Metal/WSe₂ Heterojunctions.
暂无分享,去创建一个
Goutham Ezhilarasu | S. Cronin | Chun-Chung Chen | Ioannis Chatzakis | R. Dhall | Rohan Dhall | Stephen B Cronin | Zhen Li | I. Chatzakis | G. Ezhilarasu | Chun-Chung Chen | Zhen Li
[1] Wang Yao,et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.
[2] Jun Lou,et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.
[3] S. Cronin,et al. Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating , 2014, Nano Research.
[4] Y. J. Zhang,et al. Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.
[5] S. Khondaker,et al. Photoluminescence quenching in gold - MoS2 hybrid nanoflakes , 2014, Scientific Reports.
[6] R. Wallace,et al. The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.
[7] A. M. van der Zande,et al. Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.
[8] S. Cronin,et al. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction , 2014 .
[9] C. Clavero,et al. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.
[10] Aaron M. Jones,et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.
[11] Andres Castellanos-Gomez,et al. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 , 2013, Nano Research.
[12] P. Jarillo-Herrero,et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.
[13] X. Duan,et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.
[14] R. Wallace,et al. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.
[15] D. Tománek,et al. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. , 2013, ACS nano.
[16] L. Chu,et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.
[17] J. Shan,et al. Tightly bound trions in monolayer MoS2. , 2012, Nature materials.
[18] M. Fontana,et al. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.
[19] M. Armstrong,et al. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes , 2013, Nano Research.
[20] Keliang He,et al. Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.
[21] Walter R. L. Lambrecht,et al. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .
[22] J. R. Williams,et al. Tunneling spectroscopy of graphene-boron-nitride heterostructures , 2011, 1108.2686.
[23] T. Korn,et al. Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.
[24] A. Radenović,et al. Single-layer MoS2 transistors. , 2011, Nature nanotechnology.
[25] K. Shepard,et al. Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.
[26] J. Shan,et al. Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.
[27] A. Splendiani,et al. Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.
[28] F. Matsui,et al. Atomic orbitals and photoelectron intensity angular distribution patterns of MoS2 valence band , 2008 .
[29] A. Neto,et al. Making graphene visible , 2007, Applied Physics Letters.
[30] Michael S. Fuhrer,et al. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .
[31] Andre K. Geim,et al. Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.
[32] R. T. Tung,et al. Chemical bonding and fermi level pinning at metal-semiconductor interfaces. , 2000, Physical review letters.
[33] Wolfram Jaegermann,et al. Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule , 1999 .
[34] D. S. Bradshaw,et al. Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).
[35] Lince,et al. Schottky-barrier formation on a covalent semiconductor without Fermi-level pinning: The metal-MoS2(0001) interface. , 1987, Physical review. B, Condensed matter.
[36] F. Himpsel,et al. Metal‐derived band gap states: Ti on GaAs(110) , 1986 .
[37] Marshall I. Nathan,et al. Tunneling hot‐electron transfer amplifier: A hot‐electron GaAs device with current gain , 1985 .
[38] J. Tersoff. Schottky Barrier Heights and the Continuum of Gap States , 1984 .
[39] P. Pianetta,et al. Photoemission study of Au Schottky-barrier formation on GaSb, GaAs, and InP using synchrotron radiation , 1978 .
[40] H. Michaelson. The work function of the elements and its periodicity , 1977 .
[41] C. Mee,et al. Work function measurements on (100) and (110) surfaces of silver , 1975 .
[42] A. J. Grant,et al. The electrical properties and the magnitude of the indirect gap in the semiconducting transition metal dichalcogenide layer crystals , 1975 .