Electrorheological fluids: smart soft matter and characteristics

An electrorheological fluid, a special type of suspension with controllable fluidity by an electric field, generally contains semiconducting or polarizable materials as electro-responsive parts. These materials align in the direction of the applied electric field to generate a solid-like phase in the suspension. These electro-responsive smart materials, including dielectric inorganics, semiconducting polymers and their hybrids, and polymer/inorganic composites, are reviewed in terms of their mechanism, rheological analysis and dielectric characteristics.

[1]  James W. Goodwin,et al.  Studies on Model Electrorheological Fluids , 1997 .

[2]  F. Fang,et al.  Shear Stress and Dielectric Characteristics of Polyaniline/TiO2 Composite‐Based Electrorheological Fluid , 2006 .

[3]  R. Tao Electrorheology for Efficient Energy Production and Conservation , 2011 .

[4]  Hengxi Yang,et al.  Electrorheology of polystyrene filler/polyhedral silsesquioxane suspensions. , 2012, ACS applied materials & interfaces.

[5]  Wei Zhang,et al.  A high-performance magnetorheological material: preparation, characterization and magnetic-mechanic coupling properties , 2011 .

[6]  Seung-bok Choi,et al.  ELECTRORHEOLOGICAL RESPONSE OF POLYANILINE-TIO2 COMPOSITE SUSPENSIONS , 2005 .

[7]  Halsey,et al.  Evolution of structure in a quiescent electrorheological fluid. , 1992, Physical review letters.

[8]  W. Wen,et al.  Polar molecule type electrorheological fluids , 2007 .

[9]  R. Tao,et al.  Reducing blood viscosity with magnetic fields. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Storage shear modulus of columnar structure formed in an immiscible polymer blend under electric fields. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  H. Choi,et al.  The effect of particle concentration of Poly(p-phenylene) on electrorheological response , 2002 .

[12]  M. Jhon,et al.  Phosphorylation of potato starch and its electrorheological suspension. , 2005, Biomacromolecules.

[13]  P. Sheng,et al.  Giant electrorheological effect: a microscopic mechanism. , 2010, Physical review letters.

[14]  W. Wen,et al.  Manipulation of microfluidic droplets by electrorheological fluid , 2009, Electrophoresis.

[15]  M. Stěnička,et al.  Structure changes of electrorheological fluids based on polyaniline particles with various hydrophilicities and time dependence of shear stress and conductivity during flow , 2011 .

[16]  H. Choi,et al.  Colloidal graphene oxide/polyaniline nanocomposite and its electrorheology. , 2010, Chemical communications.

[17]  Thomas W. Martinek,et al.  Electroviscous Fluids. II. Electrical Properties , 1967 .

[18]  P. Cui,et al.  Synthesis and electrorheological properties of polar molecule-dominated TiO2 particles with high yield stress , 2010 .

[19]  H. Choi,et al.  Preparation and electrorheological characteristics of poly(p-phenylene)-based suspensions , 2001 .

[20]  Yu,et al.  The Conductivity Confined Temperature Dependence of Water-Free Electrorheological Fluids , 1996, Journal of colloid and interface science.

[21]  H. Choi,et al.  Fast and facile fabrication of a graphene oxide/titania nanocomposite and its electro-responsive characteristics. , 2011, Chemical communications.

[22]  Li Wang,et al.  Controllable Preparation of Monodisperse Polystyrene Microspheres with Different Sizes by Dispersion Polymerization , 2008 .

[23]  A. Epstein,et al.  Nanocomposite of Polyaniline and Na+-Montmorillonite Clay , 2002 .

[24]  Tian Hao The role of the dielectric loss of dispersed material in the electrorheological effect , 1997 .

[25]  K. Lu,et al.  The electrorheological behavior of complex strontium titanate suspensions , 1998 .

[26]  C. Zukoski,et al.  The electrorheological properties of polyaniline suspensions , 1990 .

[27]  S. Armes,et al.  Synthesis and Characterization of Micrometer-Sized, Polyaniline-Coated Polystyrene Latexes , 1998 .

[28]  I. Bica Magnetoresistor sensor with magnetorheological elastomers , 2011 .

[29]  H. Choi,et al.  Viscoelastic characterization of semiconducting dodecylbenzenesulfonic acid doped polyaniline electrorheological suspensions , 2001 .

[30]  Chuan-Jian Zhong,et al.  Core–Shell Assembled Nanoparticles as Catalysts , 2001 .

[31]  H. Choi,et al.  A yield stress scaling function for electrorheological fluids , 2001 .

[32]  J. Kim,et al.  Core-shell structured monodisperse poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) coated polystyrene microspheres and their electrorheological response. , 2011, Macromolecular rapid communications.

[33]  Y. Meng,et al.  Electrorheological fluid under elongation, compression, and shearing. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  L. W. Liu,et al.  RHEOLOGICAL AND ELECTRICAL PROPERTIES OF NaY ZEOLITE ELECTRORHEOLOGICAL FLUID , 2001 .

[35]  Daniel J. Klingenberg,et al.  Studies on the steady-shear behavior of electrorheological suspensions , 1990 .

[36]  M. Jhon,et al.  Synthesis and electrorheological characterization of carbonaceous particle suspensions , 1999 .

[37]  Yu Tian,et al.  Compressions of electrorheological fluids under different initial gap distances. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Frank E. Filisko,et al.  An intrinsic mechanism for the activity of alumino‐silicate based electrorheological materials , 1990 .

[39]  Xiaopeng Zhao,et al.  Electrorheological properties of a polyaniline–montmorillonite clay nanocomposite suspension , 2002 .

[40]  H. Choi,et al.  Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation , 2011 .

[41]  Xiaopeng Zhao,et al.  Titanate nano-whisker electrorheological fluid with high suspended stability and ER activity , 2006 .

[42]  V. Pavlínek,et al.  Effect of field strength and temperature on viscoelastic properties of electrorheological suspensions of urea-modified silica particles , 2008 .

[43]  M. Dijkstra,et al.  Oscillatory shear-induced 3D crystalline order in colloidal hard-sphere fluids , 2012 .

[44]  H. Choi,et al.  Universal yield stress function for biocompatible chitosan based-electrorheological fluid: Effect of particle concentration , 2005 .

[45]  Daniel J. Klingenberg,et al.  Electrorheology : mechanisms and models , 1996 .

[46]  H. Böse,et al.  INVESTIGATIONS ON ZEOLITE-BASED ER FLUIDS SUPPORTED BY EXPERIMENTAL DESIGN , 1999 .

[47]  Do‐Heyoung Kim,et al.  Electrorheological Properties of Polypyrrole and its Composite ER Fluids , 2007 .

[48]  R. Sakurai,et al.  The effect of blending particles with different conductivity on electrorheological properties , 1996 .

[49]  Limu Wang,et al.  Microdroplet-based universal logic gates by electrorheological fluid , 2011 .

[50]  G. Turcotte,et al.  VISCOSITY OF BIOMATERIALS , 1980 .

[51]  Daniel J. Klingenberg,et al.  Large amplitude oscillatory shear of ER suspensions , 1999 .

[52]  Patrick M. Johnson,et al.  Directed self-assembly of colloidal dumbbells with an electric field. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[53]  Xiaopeng Zhao,et al.  Oleophilicity and the strong electrorheological effect of surface-modified titanium oxide nano-particles , 2007 .

[54]  J. W. Goodwin,et al.  Effects of electric fields on the rheology of non-aqueous concentrated suspensions , 1989 .

[55]  H. Choi,et al.  Graphene oxide coated core–shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field , 2011 .

[56]  Y. Ko,et al.  Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation. , 2011, ACS applied materials & interfaces.

[57]  Seung-Bok Choi,et al.  Vibration control of electrorheological seat suspension with human-body model using sliding mode control , 2007 .

[58]  H. Choi,et al.  Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[59]  Xiaopeng Zhao,et al.  Electrorheological fluids based on nano-fibrous polyaniline , 2008 .

[60]  M. Kasaai,et al.  Intrinsic viscosity–molecular weight relationship for chitosan , 2000 .

[61]  Xiaopeng Zhao,et al.  Electrorheology of nanofiber suspensions , 2011, Nanoscale research letters.

[62]  Yu Tian,et al.  ER fluid based on zeolite and silicone oil with high strength , 2001 .

[63]  J. Jung,et al.  Effect of aliphatic spacer length on the electrorheological properties of side-chain liquid crystalline polymer-silica composite suspensions , 2010 .

[64]  V. Pavlínek,et al.  Electrorheological properties of suspensions of silica nanoparticles modified by urea and N,N-dimethylformamide , 2007 .

[65]  Myung S. Jhon,et al.  Viscoelasticity of an electrorheological fluid using a vertical oscillation rheometer , 1998 .

[66]  P. Sheng,et al.  Influence of liquid phase on nanoparticle-based giant electrorheological fluid , 2008, Nanotechnology.

[67]  H. Choi,et al.  Synthesis and Electrorheological Characterization of Polyaniline and NA + -MONTMORILLONITE Clay Nanocomposite , 2001 .

[68]  A. Blaaderen,et al.  A colloidal model system with an interaction tunable from hard sphere to soft and dipolar , 2003, Nature.

[69]  P. Sheng,et al.  Electrorheological Fluids: Mechanisms, Dynamics, and Microfluidics Applications , 2012 .

[70]  Robert A. Anderson,et al.  Chain model of electrorheology , 1996 .

[71]  Chunzhong Li,et al.  Electrorheological behavior of urea-doped mesoporous TiO2 suspensions , 2006 .

[72]  W. M. Winslow Induced Fibration of Suspensions , 1949 .

[73]  V. Pavlínek,et al.  Electrorheological characteristics of polyaniline/titanate composite nanotube suspensions , 2009 .

[74]  P. Sheng,et al.  The giant electrorheological effect in suspensions of nanoparticles , 2003, Nature materials.

[75]  D. Klingenberg,et al.  The small shear rate response of electrorheological suspensions. II. Extension beyond the point–dipole limit , 1991 .

[76]  Xiaopeng Zhao,et al.  Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles , 2009 .

[77]  Xiaopeng Zhao,et al.  Preparation and Electrorheological Activity of Mesoporous Rare-Earth-Doped TiO2 , 2002 .

[78]  Amorphous ceramics as the particulate phase in electrorheological materials systems , 1996 .

[79]  Weijia Wen,et al.  Particle Size Scaling of the Giant Electrorheological Effect , 2004 .

[80]  P. Sáha,et al.  Electrorheological activity of polyphenylenediamine suspensions in silicone oil , 2000 .

[81]  Xiaopeng Zhao,et al.  Giant electrorheological activity of high surface area mesoporous cerium-doped TiO2 templated by block copolymer , 2004 .

[82]  S. Rowan,et al.  Rheological Properties and Conformation of a Side-Chain Liquid Crystal Polysiloxane Dissolved In a Nematic Solvent , 2005 .

[83]  Klingenberg,et al.  Two Roles of Nonionic Surfactants on the Electrorheological Response , 1996, Journal of colloid and interface science.

[84]  James E. Martin,et al.  A light-scattering study of the nonlinear dynamics of electrorheological fluids in oscillatory shear , 1995 .

[85]  H. Choi,et al.  Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[86]  H. Ishii,et al.  Directed orientation of asymmetric composite dumbbells by electric field induced assembly. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[87]  L. C. Davis Finite‐element analysis of particle‐particle forces in electrorheological fluids , 1992 .

[88]  J. A. Wood,et al.  Electric-field induced phase transitions of dielectric colloids: Impact of multiparticle effects , 2012 .

[89]  V. Percec,et al.  Electrorheological Behavior of Main-Chain Liquid Crystal Polymers Dissolved in Nematic Solvents , 1997 .

[90]  A. Docoslis,et al.  Electrorheological properties of PDMS/carbon black suspensions under shear flow , 2009 .

[91]  Park,et al.  Surfactant Effect on the Stability and Electrorheological Properties of Polyaniline Particle Suspension. , 1998, Journal of colloid and interface science.

[92]  I. Chin,et al.  Electrorheological characterization of zeolite suspensions , 1999 .

[93]  Criticality in a non-equilibrium, driven system: Charged colloidal rods (fd-viruses) in electric fields , 2009, The European physical journal. E, Soft matter.

[94]  Xiaopeng Zhao,et al.  Wormhole-like mesoporous Ce-doped TiO2: a new electrorheological material with high activity , 2003 .

[95]  Xiaopeng Zhao,et al.  The wettability, size effect and electrorheological activity of modified titanium oxide nanoparticles , 2007 .

[96]  Xin‐Rong Zhang,et al.  Investigation of Impulse Response of an ER Fluid Viscous Damper , 2010 .

[97]  I. Song,et al.  Electrorheological and dielectric properties of polypyrrole dispersions , 2002 .

[98]  Zhengyou Liu,et al.  Wettability of urea-doped TiO2 nanoparticles and their high electrorheological effects , 2008 .

[99]  S. Armes,et al.  Conducting Polymer‐Coated Latex Particles , 2000 .

[100]  V. Pavlínek,et al.  Preparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions , 2006 .

[101]  P. Atten,et al.  Macroscopic model of interaction between particles in an electrorheological fluid , 1994 .

[102]  Seung-bok Choi,et al.  Electrorheological characteristics of solvent‐cast polypyrrole/clay nanocomposite , 2009 .

[103]  V. Pavlínek,et al.  Template-free synthesis of hollow poly(o-anisidine) microspheres and their electrorheological characteristics , 2011 .

[104]  Xiaopeng Zhao,et al.  Electrorheological properties of titanate nanotube suspensions , 2008 .

[105]  Myung S. Jhon,et al.  Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: Size effect , 2003 .

[106]  Wanquan Jiang,et al.  Structure and electrorheological properties of nanoporous BaTiO3 crystalline powders prepared by sol–gel method , 2009 .

[107]  J. Kim,et al.  Organic/inorganic hybrid of polyaniline/BaTiO3 composites and their electrorheological and dielectric characteristics , 2007 .

[108]  Tian Yu,et al.  Compression Enhanced Shear Yield Stress of Electrorheological Fluid , 2009 .

[109]  O. Erol,et al.  Polythiophene/borax conducting composite II: Electrorheology and industrial applications , 2011 .

[110]  H. Choi,et al.  Emulsion polymerized polyaniline synthesized with dodecylbenzene-sulfonic acid and its electrorheological characteristics : Temperature effect , 2007 .

[111]  Pattern formation in flowing electrorheological fluids. , 2002, Physical review letters.

[112]  Weijia Wen,et al.  Dielectric electrorheological fluids: Theory and experiment , 2003 .

[113]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[114]  Xiaopeng Zhao,et al.  Coaxial cable-like polyaniline@titania nanofibers: facile synthesis and low power electrorheological fluid application , 2010 .

[115]  Y. Ko,et al.  Gelation of natural polymer dispersed suspensions under electric field , 2012 .

[116]  M. Jhon,et al.  Synthesis and electrorheological characteristics of microencapsulated polyaniline particles with melamine-formaldehyde resins , 2001 .

[117]  H. Choi,et al.  Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. , 2012, Chemical communications.

[118]  Dominiek Reynaerts,et al.  The use of liquid crystals as electrorheological fluids in microsystems : model and measurements , 2006 .

[119]  A. Jamieson,et al.  Electrorheological behavior of side-chain liquid-crystalline polysiloxanes in nematic solvents , 1997 .

[120]  A. Bhaumik,et al.  In-situ polymerization of grafted aniline in the channels of mesoporous silica SBA-15 , 2007 .

[121]  Oktay Yarimaga,et al.  Polydiacetylenes: supramolecular smart materials with a structural hierarchy for sensing, imaging and display applications. , 2012, Chemical communications.

[122]  Y. Tsai,et al.  Development of a combined machining method using electrorheological fluids for EDM , 2008 .

[123]  K. To,et al.  Synthesis and electrorheological behavior of semiconducting poly(aniline-CO-O-ethoxy aniline) , 1999 .

[124]  Xiaopeng Zhao,et al.  The electrorheological effect of polyaniline nanofiber, nanoparticle and microparticle suspensions , 2009 .

[125]  H. Choi,et al.  Carbon Nanotube-Adsorbed Polystyrene and Poly(methyl methacrylate) Microspheres , 2005 .

[126]  V. Pavlínek,et al.  Structural and electrorheological properties of mesoporous silica modified with triethanolamine , 2008 .

[127]  H. Choi,et al.  Electrorheological response of biocompatible chitosan particles in corn oil , 2003 .

[128]  H. Choi,et al.  Well controlled core/shell type polymeric microspheres coated with conducting polyaniline: fabrication and electrorheology , 2011 .

[129]  F. Ikazaki,et al.  Mechanism of the Electrorheological Effect: Evidence from the Conductive, Dielectric, and Surface Characteristics of Water-Free Electrorheological Fluids , 1998 .

[130]  H. Block,et al.  Coating of Polyaniline with an Insulating Polymer to Improve the Power Efficiency of Electrorheological Fluids , 1999 .

[131]  K. Koyama,et al.  Electrorheological properties of poly(o-anisidine) and poly(o-anisidine)-coated silica suspensions , 1996 .

[132]  Xiaopeng Zhao,et al.  The electrorheological effect and dielectric properties of suspensions containing polyaniline@titania nanocable-like particles , 2011 .

[133]  M. Jhon,et al.  COLE-COLE ANALYSIS ON DIELECTRIC SPECTRA OF ELECTRORHEOLOGICAL SUSPENSIONS , 2007 .

[134]  Tao,et al.  Three-dimensional structure of induced electrorheological solid. , 1991, Physical review letters.

[135]  Weijia Wen,et al.  Electrorheological fluids: structures and mechanisms. , 2008, Soft matter.

[136]  H. Choi,et al.  Synthesis and electrorheological properties of polyaniline‐Na+‐montmorillonite suspensions , 1999 .

[137]  H. Minami,et al.  Micron-sized, monodisperse, snowman/confetti-shaped polymer particles by seeded dispersion polymerization , 2005 .

[138]  Paul Taylor,et al.  Touch sensitive electrorheological fluid based tactile display , 2005 .

[139]  Helmut Ermert,et al.  Electrorheological tactel elements , 2005 .

[140]  Yu Tian,et al.  Ultrahigh yield stress in a general electrorheological fluid under compression , 2010 .

[141]  H. Choi,et al.  Novel fabrication of polyaniline particles wrapped by exfoliated clay sheets and their electrorheology. , 2010, Journal of nanoscience and nanotechnology.

[142]  H. Choi,et al.  Novel electrorheological properties of a metal-organic framework Cu3(BTC)2. , 2012, Chemical communications.

[143]  H. Choi,et al.  Smart monodisperse polystyrene/polyaniline core–shell structured hybrid microspheres fabricated by a controlled releasing technique and their electro-responsive characteristics , 2011 .

[144]  Shouqiang Men,et al.  Experimental study of dielectric constant influence on electrorheological effect , 2000 .

[145]  K. Suh,et al.  Electrorheological properties of carbon nanotubes-coated monodisperse polymeric microspheres , 2007 .

[146]  Brian S. Hawkett,et al.  Synthesis of anisotropic nanoparticles by seeded emulsion polymerization. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[147]  Jun-Ho Lee,et al.  Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres , 2010 .

[148]  J. Dhont,et al.  Electric-field induced transitions in suspensions of charged colloidal rods , 2010 .

[149]  Nicos Makris,et al.  Zeolite-based electrorheological fluids: Testing, modeling and instrumental artifacts , 1997 .

[150]  F. Fang,et al.  Synthesis and electrorheological characteristics of polyaniline/organoclay nanoparticles via Pickering emulsion polymerization , 2010 .

[151]  H. Choi,et al.  Electrorheological properties of a suspension of a mesoporous molecular sieve (MCM-41) , 2000 .

[152]  H. Block,et al.  Materials and mechanisms in electrorheology , 1990 .

[153]  H. Zengin,et al.  Synthesis and electrorheological properties of polyaniline/silicon dioxide composites , 2012, Journal of Materials Science.

[154]  D. Suh,et al.  Magneto thermoelectric power of the doped polyacetylene , 1999 .

[155]  M. Jaroniec,et al.  Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements , 1997 .

[156]  Kexiang Wei,et al.  Vibration characteristics of electrorheological elastomer sandwich beams , 2011 .

[157]  A. Stipanovic,et al.  Water-activated cellulose-based electrorheological fluids , 2005 .

[158]  John P. Coulter,et al.  Engineering Applications of Electrorheological Materials , 1993 .

[159]  D. Weitz,et al.  Synthesis of nonspherical colloidal particles with anisotropic properties. , 2006, Journal of the American Chemical Society.

[160]  X. Tang,et al.  On the conductivity model for the electrorheological effect , 1995 .

[161]  Structure of electrorheological fluids , 2000, cond-mat/0001348.

[162]  Constantinos Mavroidis,et al.  Control of electro-rheological fluid based resistive torque elements for use in active rehabilitation devices , 2007 .

[163]  C. Tsitsilianis Responsive reversible hydrogels from associative “smart” macromolecules , 2010 .

[164]  Hyoung Jin Choi,et al.  Fabrication of semiconducting graphene oxide/polyaniline composite particles and their electrorheological response under an applied electric field , 2012 .

[165]  Xiaopeng Zhao,et al.  Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil , 2010 .

[166]  Limu Wang,et al.  Logic control of microfluidics with smart colloid. , 2010, Lab on a chip.

[167]  H. Choi,et al.  Electrorheology of polymers and nanocomposites , 2009 .

[168]  P. Cui,et al.  Fabrication of uniform core–shell structural calcium and titanium precipitation particles and enhanced electrorheological activities , 2009, Nanotechnology.

[169]  V. Pavlínek,et al.  Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres , 2011 .

[170]  V. Pavlínek,et al.  Conducting polypyrrole confined in ordered mesoporous silica SBA-15 channels : Preparation and its electrorheology , 2006 .

[171]  Mengying Zhang,et al.  Generation and manipulation of “smart” droplets , 2009 .

[172]  P. Cui,et al.  Electrorheological property and microstructure of acetamide-modified TiO2 nanoparticles , 2008 .

[173]  H. Choi,et al.  Silica nanoparticle decorated polyaniline nanofiber and its electrorheological response , 2011 .

[174]  A. Sirivat,et al.  Creep and recovery behaviors of a polythiophene-based electrorheological fluid , 2006 .

[175]  Myung S. Jhon,et al.  New analysis of yield stress on giant electrorheological fluids , 2011, Colloid and Polymer Science.

[176]  Xiaopeng Zhao,et al.  ELECTRORHEOLOGICAL BEHAVIORS OF POLYANILINE-MONTMORILLONITE CLAY NANOCOMPOSITE , 2002 .

[177]  K. Suh,et al.  Monodisperse conducting colloidal dipoles with symmetric dimer structure for enhancing electrorheology properties. , 2012, Journal of colloid and interface science.

[178]  Linuo Zhou,et al.  Preparation and electrorheological properties of triethanolamine-modified TiO2 , 2006 .

[179]  Hideyuki Uejima Dielectric Mechanism and Rheological Properties of Electro-Fluids , 1972 .

[180]  H. Choi,et al.  Synthesis and Characterization of Polyaniline/Mesoporous SBA‐15 Nanocomposite , 2002 .

[181]  H. Jaeger,et al.  Electrorheological response of dense strontium titanyl oxalate suspensions , 2011 .

[182]  Halsey,et al.  Structure of electrorheological fluids. , 1990, Physical review letters.

[183]  A. Vrij,et al.  Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres , 1992 .

[184]  Akira Fujishima,et al.  Multicolour photochromism of TiO2 films loaded with silver nanoparticles , 2003, Nature materials.

[185]  M. Narkis,et al.  Polyaniline–DBSA/organophilic clay nanocomposites: synthesis and characterization , 2002 .

[186]  H. Orihara,et al.  Three-dimensional observation of an immiscible polymer blend subjected to a step electric field under shear flow. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[187]  J. Joo,et al.  Intercalated polypyrrole/Na+-montmorillonite nanocomposite via an inverted emulsion pathway method , 2003 .

[188]  Xiaopeng Zhao,et al.  Preparation and Electrorheological Characteristics of Rare-Earth-Doped TiO2 Suspensions , 2002 .

[189]  H. Choi,et al.  Magnetorheology: materials and application , 2010 .

[190]  H. Lekkerkerker,et al.  Preparation of monodisperse, fluorescent PMMA-latex colloids by dispersion polymerization. , 2002, Journal of colloid and interface science.

[191]  J. Joo,et al.  Synthesis and electrorheology of emulsion intercalated PANI-clay nanocomposite , 2001 .

[192]  R. Akiyama,et al.  Electrically Induced Microstructures in Micro- and Nano-Suspensions and Related Physical Properties , 2009 .

[193]  B. Lee,et al.  Transparent thiourea treated silica suspension through refractive index matching method and its electrorheology , 2012 .

[194]  Xiaopeng Zhao,et al.  Preparation and electrorheological characteristic of Y-doped BaTiO3 suspension under dc electric field , 2004 .

[195]  H. Choi,et al.  HYSTERESIS BEHAVIORS OF POLY (NAPHTHALENE QUINONE) RADICAL ELECTRORHEOLOGICAL FLUID , 1999 .