Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body.

Last-minute labeling: Mesoporous silica nanoparticles (MSNs) were modified with a very short half-life fluorine-18-labeled azide radiotracer by a cycloaddition reaction after the MSNs had reached the tumor site in mice. The tumor could then be visualized successfully with positron emission tomography.

[1]  Eugen Katz,et al.  Integrierte Hybridsysteme aus Nanopartikeln und Biomolekülen: Synthese, Eigenschaften und Anwendungen , 2004 .

[2]  R. Schirrmacher,et al.  Recent Developments and Trends in 18F-Radiochemistry: Syntheses and Applications , 2007 .

[3]  Andrei A. Poloukhtine,et al.  Selective labeling of living cells by a photo-triggered click reaction. , 2009, Journal of the American Chemical Society.

[4]  S. Gambhir Molecular imaging of cancer with positron emission tomography , 2002, Nature Reviews Cancer.

[5]  Zongxi Li,et al.  Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. , 2010, Small.

[6]  Mihály Kállay,et al.  A non-fluorinated monobenzocyclooctyne for rapid copper-free click reactions. , 2012, Chemistry.

[7]  Greg M. Thurber,et al.  Reactive polymer enables efficient in vivo bioorthogonal chemistry , 2012, Proceedings of the National Academy of Sciences.

[8]  Carolyn R Bertozzi,et al.  Cu-free click cycloaddition reactions in chemical biology. , 2010, Chemical Society reviews.

[9]  M. Wolfert,et al.  Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. , 2008, Angewandte Chemie.

[10]  M. Prato,et al.  Carbon nanotubes as nanomedicines: from toxicology to pharmacology. , 2006, Advanced drug delivery reviews.

[11]  A. Louie,et al.  Novel method to label solid lipid nanoparticles with 64cu for positron emission tomography imaging. , 2011, Bioconjugate chemistry.

[12]  Saji George,et al.  Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. , 2009, ACS nano.

[13]  Weili Lin,et al.  Mesoporous silica nanospheres as highly efficient MRI contrast agents. , 2008, Journal of the American Chemical Society.

[14]  Isabelle Texier,et al.  Copper-free click chemistry for highly luminescent quantum dot conjugates: application to in vivo metabolic imaging. , 2010, Bioconjugate chemistry.

[15]  P. D. de Witte,et al.  Liposomes for photodynamic therapy. , 2004, Advanced drug delivery reviews.

[16]  Yu Chen,et al.  Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. , 2012, Journal of the American Chemical Society.

[17]  R. Weissleder,et al.  Modular Strategy for the Construction of Radiometalated Antibodies for Positron Emission Tomography Based on Inverse Electron Demand Diels–Alder Click Chemistry , 2011, Bioconjugate chemistry.

[18]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[19]  Erkki Ruoslahti,et al.  Targeting of drugs and nanoparticles to tumors , 2010, The Journal of cell biology.

[20]  Ralph Weissleder,et al.  Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells , 2000, Nature Biotechnology.

[21]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[22]  Philip W. Miller,et al.  Synthese von 11C‐, 18F‐, 15O‐ und 13N‐Radiotracern für die Positronenemissionstomographie , 2008 .

[23]  Jinwoo Cheon,et al.  Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. , 2008, Angewandte Chemie.

[24]  M. Debets,et al.  Bioconjugation with strained alkenes and alkynes. , 2011, Accounts of chemical research.

[25]  Taeghwan Hyeon,et al.  Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. , 2011, Accounts of chemical research.

[26]  C. Bertozzi,et al.  Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacyclooctynones , 2010, Journal of the American Chemical Society.

[27]  Chung-Yuan Mou,et al.  Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers , 2005 .

[28]  M E Phelps,et al.  Positron emission tomography provides molecular imaging of biological processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Karen L Wooley,et al.  64Cu Core-labeled nanoparticles with high specific activity via metal-free click chemistry. , 2012, ACS nano.

[30]  Zongxi Li,et al.  Mesoporous silica nanoparticles in biomedical applications. , 2012, Chemical Society reviews.

[31]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.

[32]  Warren C W Chan,et al.  Strategies for the intracellular delivery of nanoparticles. , 2011, Chemical Society reviews.

[33]  G. Whitesides The 'right' size in nanobiotechnology , 2003, Nature Biotechnology.

[34]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[35]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[36]  R. Rossin,et al.  SYNFORM ISSUE 2010/9 , 2010, Angewandte Chemie.

[37]  C. Bertozzi,et al.  From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions , 2011, Accounts of chemical research.

[38]  Courtney R. Thomas,et al.  Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. , 2011, Accounts of chemical research.

[39]  Zhuang Liu,et al.  Carbon nanotubes as photoacoustic molecular imaging agents in living mice. , 2008, Nature nanotechnology.

[40]  Ralph Weissleder,et al.  Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. , 2009, Angewandte Chemie.

[41]  Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. , 2010, Chemical communications.

[42]  Jeffrey A. Clanton,et al.  Molecular Imaging: Radiopharmaceuticals for PET and SPECT , 2010, Journal of Nuclear Medicine.

[43]  Chin-Tu Chen,et al.  Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution , 2009 .

[44]  V. Muzykantov,et al.  Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities , 2012, Science.

[45]  Zhichuan J. Xu,et al.  Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles , 2010, Advanced materials.

[46]  B. Feringa,et al.  Strain-promoted copper-free "click" chemistry for 18F radiolabeling of bombesin. , 2011, Angewandte Chemie.

[47]  E. Amstad,et al.  Nanoparticle actuated hollow drug delivery vehicles. , 2012, Nanomedicine.

[48]  Cecilia Sahlgren,et al.  Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. , 2012, Nanomedicine.

[49]  C. Mou,et al.  Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. , 2010, Angewandte Chemie.

[50]  Pius August Schubiger,et al.  Molecular imaging with PET. , 2008, Chemical reviews.

[51]  C. Bertozzi,et al.  In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish , 2008, Science.

[52]  Nicholas J Long,et al.  Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. , 2008, Angewandte Chemie.

[53]  Dong Wook Kim,et al.  A new class of SN2 reactions catalyzed by protic solvents: Facile fluorination for isotopic labeling of diagnostic molecules. , 2006, Journal of the American Chemical Society.

[54]  Young-wook Jun,et al.  Chemisches Design von leistungsfhigen Nanosonden fr die Kernspintomographie , 2008 .

[55]  Eun-Mi Kim,et al.  F-18 labeling protocol of peptides based on chemically orthogonal strain-promoted cycloaddition under physiologically friendly reaction conditions. , 2012, Bioconjugate chemistry.