Microscopic Theory of Tunneling Spectroscopy in Sr2RuO4

We study the surface Andreev bound state (ABS) of superconducting Sr2RuO4, which is a candidate material for the realization of the chiral p-wave superconducting state. In order to clarify the role of chiral edge modes as ABSs, the surface density of states and the tunneling conductance is calculated in the normal metal/Sr2RuO4 junction within the framework of recursive Green’s function method, while taking into account the orbital degrees of freedom (including spin–orbit interactions) with realistic material parameters. In Sr2RuO4, there are two bands α and β originating from quasi-one-dimensional orbitals dyz and dzx and a two-dimensional band γ originating from dxy orbital. We discuss about the contributions of various electronic bands to LDOS and the influence of atomic spin–orbit interaction (SOI). In the light of our calculations, quasi-one-dimensional model with dominant pair potentials in α and β bands is consistent with conductance measurements in Au/Sr2RuO4 junctions.

[1]  Timur K. Kim,et al.  Renormalized band structure of Sr2RuO4: A quasiparticle tight-binding approach , 2013 .

[2]  P. Thalmeier,et al.  Multiorbital and hybridization effects in the quasiparticle interference of the triplet superconductor Sr2RuO4 , 2013, 1308.6734.

[3]  S. Kivelson,et al.  Evidence from tunneling spectroscopy for a quasi-one-dimensional origin of superconductivity in Sr$_2$RuO$_4$ , 2013, 1308.0894.

[4]  M. Sigrist,et al.  Topological and edge state properties of a three-band model for Sr2RuO4 , 2013, 1307.2382.

[5]  W. Hanke,et al.  Theory of superconductivity in a three-orbital model of Sr2RuO4 , 2013, 1305.2317.

[6]  Yukio Tanaka,et al.  Symmetry-protected Majorana fermions in topological crystalline superconductors: theory and application to Sr2RuO4. , 2013, Physical review letters.

[7]  A. V. Burmistrova,et al.  Theory of Tunneling Spectroscopy of Multi-Band Superconductors , 2013 .

[8]  M. Sigrist,et al.  Properties of edge states in a spin-triplet two-band superconductor , 2012, 1205.1591.

[9]  C. Kallin Chiral p-wave order in Sr2RuO4 , 2012, Reports on progress in physics. Physical Society.

[10]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[11]  Yukio Tanaka,et al.  Symmetry and Topology in Superconductors –Odd-Frequency Pairing and Edge States– , 2011, 1105.4700.

[12]  Y. Maeno,et al.  Evaluation of Spin-Triplet Superconductivity in Sr2RuO4 , 2011, 1112.1620.

[13]  Y. Maeno,et al.  Edge states of Sr2RuO4 detected by in-plane tunneling spectroscopy. , 2011, Physical review letters.

[14]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[15]  S. Wu,et al.  Effects of interface spin-orbit coupling on tunneling between normal metal and chiral p-wave superconductor , 2010, 1005.0370.

[16]  S. Raghu,et al.  Hidden quasi-one-dimensional superconductivity in Sr₂RuO₄. , 2010, Physical review letters.

[17]  Masatoshi Sato,et al.  Topological odd-parity superconductors , 2009, 0912.5281.

[18]  S. Vieira,et al.  A nodeless superconducting gap in Sr2RuO4 from tunneling spectroscopy , 2009 .

[19]  M. Sato Topological properties of spin-triplet superconductors and Fermi surface topology in the normal state , 2008, 0806.0426.

[20]  Y. Pennec,et al.  Cleaving-temperature dependence of layered-oxide surfaces. , 2008, Physical review letters.

[21]  H. Hilgenkamp,et al.  Upper bound on the Andreev states induced second harmonic in the Josephson coupling of YBa2Cu3O7−δ/Nb junctions from experiment and numerical simulations , 2008 .

[22]  L. Tjeng,et al.  Strong spin-orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4. , 2008, Physical review letters.

[23]  T. Nomura,et al.  Possible Collective Spin Excitation in the Spin-Triplet Superconducting State of Sr2RuO4: Multi-Band Theory , 2008 .

[24]  A. Golubov,et al.  Theory of the proximity effect in junctions with unconventional superconductors. , 2006, Physical review letters.

[25]  Y. Asano,et al.  Anomalous Josephson effect in p-wave dirty junctions. , 2006, Physical review letters.

[26]  Y. Asano,et al.  Anomalous features of the proximity effect in triplet superconductors , 2005, cond-mat/0508408.

[27]  R. Arita,et al.  Spin-Triplet Superconductivity Induced by Charge Fluctuations in Extended Hubbard Model , 2005, cond-mat/0505311.

[28]  T. Nomura Theory of Transport Properties in the p-Wave Superconducting State of Sr2RuO4 –A Microscopic Determination of the Gap Structure– , 2005, cond-mat/0501231.

[29]  T. Yokoyama,et al.  Theory of enhanced proximity effect by midgap Andreev resonant state in diffusive normal-metal/triplet superconductor junctions , 2004, cond-mat/0411410.

[30]  Y. Maeno,et al.  Tunneling Properties at the Interface between Superconducting Sr2RuO4 and a Ru Microinclusion , 2004, cond-mat/0408524.

[31]  Y. Maeno,et al.  Measurement of the 101Ru-Knight shift of superconducting Sr2RuO4 in a parallel magnetic field. , 2004, Physical review letters.

[32]  R. Arita,et al.  Off-site repulsion-induced triplet superconductivity: a possibility for chiral p(x+y)-wave pairing in Sr2RuO4. , 2004, Physical review letters.

[33]  Y. Maeno,et al.  Determination of the Superconducting Gap Structure in All Bands of the Spin-Triplet Superconductor Sr2RuO4 , 2004, cond-mat/0404070.

[34]  S. Kashiwaya,et al.  Anomalous charge transport in triplet superconductor junctions , 2003, cond-mat/0308123.

[35]  Y. Maeno,et al.  The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing , 2003 .

[36]  M. Ogata,et al.  Microscopic Identification of the D-vector in Triplet Superconductor Sr_2RuO_4 , 2003, cond-mat/0302299.

[37]  Y. Nazarov,et al.  Circuit theory of unconventional superconductor junctions. , 2002, Physical review letters.

[38]  Upward,et al.  Direct observation of the superconducting gap of Sr2RuO4 , 2002 .

[39]  R. Arita,et al.  Determination of pairing symmetry from magnetotunneling spectroscopy: A case study for quasi-one-dimensional organic superconductors , 2002, cond-mat/0204409.

[40]  T. Nomura,et al.  Erratum: Roles of Electron Correlations in the Spin-Triplet Superconductivity of Sr2RuO4 , 2002, cond-mat/0203453.

[41]  T. Nomura,et al.  Detailed Investigation of Gap Structure and Specific Heat in the p-wave Superconductor Sr2RuO4. , 2002 .

[42]  R. Greene,et al.  Evidence of a d- to s-wave pairing symmetry transition in the electron-doped cuprate superconductor Pr(2-x)CexCuO4. , 2001, Physical review letters.

[43]  V. Yakovenko,et al.  Edge states and determination of pairing symmetry in superconducting Sr 2 RuO 4 , 2001, cond-mat/0106198.

[44]  K. Kuroki,et al.  Theoretical study of quasiparticle states near the surface of a quasi-one-dimensional organic superconductor ( TMTSF ) 2 PF 6 , 2001, cond-mat/0103381.

[45]  M. Sigrist,et al.  Phenomenological Theory of the 3 Kelvin Phase in Sr2RuO4 , 2001, cond-mat/0102464.

[46]  M. Sigrist,et al.  Spontaneous Hall effect in a chiral p-wave superconductor , 2001, cond-mat/0102143.

[47]  Y. Maeno,et al.  Observation of Andreev surface bound states in the 3-K phase region of Sr2RuO4. , 2001, Physical review letters.

[48]  Y. Maeno,et al.  Ru NMR probe of spin susceptibility in the superconducting state of Sr 2 RuO 4 , 2001 .

[49]  Y. Asano Numerical method for dc Josephson current between d-wave superconductors , 2001 .

[50]  R. Arita,et al.  A crib-shaped triplet pairing gap function for an orthogonal pair of quasi-one dimensional Fermi surfaces in Sr2RuO4 , 2001, cond-mat/0101077.

[51]  S. Sarma,et al.  Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors , 2000, cond-mat/0010206.

[52]  T. Takimoto Orbital fluctuation-induced triplet superconductivity: Mechanism of superconductivity in Sr 2 RuO 4 , 2000, cond-mat/0204021.

[53]  T. Nomura,et al.  Perturbation Theory of Spin-Triplet Superconductivity for Sr2RuO4. , 2000 .

[54]  Yukio Tanaka,et al.  Tunnelling effects on surface bound states in unconventional superconductors , 2000 .

[55]  Yukio Tanaka,et al.  Angle-resolved Andreev bound states in anisotropic d -wave high- T c YBa 2 Cu 3 O 7 − y superconductors , 2000 .

[56]  Ogata,et al.  Spin-triplet superconductivity due to antiferromagnetic spin-fluctuation in Sr2RuO4 , 2000, Physical review letters.

[57]  C. Ting,et al.  Proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet– d -wave-superconductor junctions , 1999, cond-mat/9910276.

[58]  Y. Maeno,et al.  17O Knight shift study in the superconducting state of Sr2RuO4 , 1999 .

[59]  M. Ogata,et al.  QUASIPARTICLE STATES NEAR SURFACES OF HIGH-TC SUPERCONDUCTORS BASED ON THEEXTENDED T-J MODEL , 1999 .

[60]  K. Miyake,et al.  Model for Unconventional Superconductivity of Sr2RuO4 : Effect of Impurity Scattering on Time-Reversal Breaking Triplet Pairing with a Tiny Gap , 1999 .

[61]  Y. Maeno,et al.  Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift , 1998, Nature.

[62]  H. Takashima,et al.  TUNNELING SPECTROSCOPY AND PAIRING SYMMETRY OF THE HIGH-Tc SUPERCONDUCTORS , 1998 .

[63]  M. Strasik,et al.  DIRECTIONAL TUNNELING AND ANDREEV REFLECTION ON YBA2CU3O7-DELTA SINGLE CRYSTALS : PREDOMINANCE OF D-WAVE PAIRING SYMMETRY VERIFIED WITH THE GENERALIZ ED BLONDER, TINKHAM, AND KLAPWIJK THEORY , 1998 .

[64]  Y. Maeno,et al.  Time-reversal symmetry-breaking superconductivity in Sr2RuO4 , 1998, Nature.

[65]  S. Kashiwaya,et al.  Theory of Tunneling Conductance for Normal Metal/Insulator/ , 1997, cond-mat/9709096.

[66]  G. Volovik,et al.  On edge states in superconductor with time inversion symmetry breaking , 1997, cond-mat/9709084.

[67]  C. Mirkin,et al.  Observation of surface-induced broken time-reversal symmetry in YBa 2 Cu 3 O 7 tunnel junctions , 1997 .

[68]  S. Kashiwaya,et al.  THEORY OF TUNNELING SPECTROSCOPY IN SUPERCONDUCTING SR2RUO4 , 1997, cond-mat/9706284.

[69]  C. Honerkamp,et al.  Andreev Reflection in Unitary and Non-Unitary Triplet States , 1997, cond-mat/9706199.

[70]  H. Takashima,et al.  Spatially continuous zero-bias conductance peak on (110) YBa 2 Cu 3 O 7-δ surfaces , 1997 .

[71]  A. Umerski,et al.  Closed-form solutions to surface Green's functions , 1997 .

[72]  T. M. Rice,et al.  Sr2RuO4: an electronic analogue of 3He? , 1995 .

[73]  Tanaka,et al.  Theory of Tunneling Spectroscopy of d-Wave Superconductors. , 1995, Physical review letters.

[74]  Takashima,et al.  Origin of zero-bias conductance peaks in high-Tc superconductors. , 1995, Physical review. B, Condensed matter.

[75]  F. Lichtenberg,et al.  Superconductivity in a layered perovskite without copper , 1994, Nature.

[76]  Hu,et al.  Midgap surface states as a novel signature for dxa2-xb2-wave superconductivity. , 1994, Physical review letters.

[77]  H. Ebisawa,et al.  Conductance Formula for Mesoscopic Systems with a Superconducting Segment , 1992 .

[78]  Shun–ichi Kobayashi Mesoscopic Josephson Junctions , 1992 .

[79]  K. Nagai,et al.  A polar state in a slab as a soluble model of p-wave Fermi superfluid in finite geometry , 1986 .

[80]  Daniel S. Fisher,et al.  Anderson Localization in Two Dimensions , 1981 .

[81]  L. Buchholtz,et al.  Identification of p -wave superconductors , 1981 .