Disjoint-Support Factors and Seasonality Estimation in E-Commerce
暂无分享,去创建一个
[1] Andrew Gelman,et al. Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .
[2] P. McSharry,et al. A comparison of univariate methods for forecasting electricity demand up to a day ahead , 2006 .
[3] Chris Chatfield,et al. Introduction to Statistical Time Series. , 1976 .
[4] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[5] Steven C. Wheelwright,et al. Forecasting methods and applications. , 1979 .
[6] Yaakov Bar-Shalom,et al. Estimation and Tracking: Principles, Techniques, and Software , 1993 .
[7] Dimitris S. Papailiopoulos,et al. The Sparse Principal Component of a Constant-Rank Matrix , 2013, IEEE Transactions on Information Theory.
[8] Dimitris S. Papailiopoulos,et al. Sparse PCA via Bipartite Matchings , 2015, NIPS.
[9] Chang‐Jin Kim,et al. Dynamic linear models with Markov-switching , 1994 .
[10] Kevin Murphy,et al. Switching Kalman Filters , 1998 .
[11] Terrence J. Sejnowski,et al. Variational Learning for Switching State-Space Models , 2001 .
[12] R. Ravi,et al. An FPTAS for minimizing a class of low-rank quasi-concave functions over a convex set , 2013, Oper. Res. Lett..
[13] Inderjit S. Dhillon,et al. Clustering to forecast sparse time-series data , 2015, 2015 IEEE 31st International Conference on Data Engineering.
[14] Patrick Seemann,et al. Matrix Factorization Techniques for Recommender Systems , 2014 .
[15] George N. Karystinos,et al. Optimal Algorithms for Binary, Sparse, and L 1 -Norm Principal Component Analysis , 2014 .
[16] Irma J. Terpenning,et al. STL : A Seasonal-Trend Decomposition Procedure Based on Loess , 1990 .