The SIC Question: History and State of Play

Recent years have seen significant advances in the study of symmetric informationally complete (SIC) quantum measurements, also known as maximal sets of complex equiangular lines. Previously, the published record contained solutions up to dimension 67, and was with high confidence complete up through dimension 50. Computer calculations have now furnished solutions in all dimensions up to 151, and in several cases beyond that, as large as dimension 844. These new solutions exhibit an additional type of symmetry beyond the basic definition of a SIC, and so verify a conjecture of Zauner in many new cases. The solutions in dimensions 68 through 121 were obtained by Andrew Scott, and his catalogue of distinct solutions is, with high confidence, complete up to dimension 90. Additional results in dimensions 122 through 151 were calculated by the authors using Scott’s code. We recap the history of the problem, outline how the numerical searches were done, and pose some conjectures on how the search technique could be improved. In order to facilitate communication across disciplinary boundaries, we also present a comprehensive bibliography of SIC research.

[1]  David Andersson An Enthusiast’s Guide to SICs in Low Dimensions , 2015 .

[2]  A. Delgado,et al.  Minimum tomography of two entangled qutrits using local measurements of one-qutrit symmetric informationally complete positive operator-valued measure , 2013 .

[3]  Wojciech Słomczyński,et al.  Quantum Dynamical Entropy, Chaotic Unitaries and Complex Hadamard Matrices , 2016, IEEE Transactions on Information Theory.

[4]  Christopher Ferrie,et al.  Framed Hilbert space: hanging the quasi-probability pictures of quantum theory , 2009, 0903.4843.

[5]  Ondrej Turek,et al.  Equiangular tight frames and unistochastic matrices , 2016, 1607.04528.

[6]  Shayne Waldron,et al.  A characterisation of projective unitary equivalence of finite frames , 2013, 1312.5393.

[7]  M. A. Ballester Sanches Optimal estimation of SU(d) using exact and approximate 2-designs , 2006 .

[8]  David Marcus Appleby,et al.  Quantum conical designs , 2015, 1507.05323.

[9]  Simon Salamon,et al.  Surveying points in the complex projective plane , 2014 .

[10]  Thomas Durt Symmetric Informationally Complete POVM tomography: theory and applications. , 2007 .

[11]  Claudio Carmeli,et al.  Informationally complete joint measurements on finite quantum systems , 2011, 1111.3509.

[12]  Ingemar Bengtsson,et al.  The Frame Potential, on Average , 2008, Open Syst. Inf. Dyn..

[13]  D. M. Appleby SIC‐POVMS and MUBS: Geometrical Relationships in Prime Dimension , 2009 .

[14]  Blake C. Stacey,et al.  Introducing the Qplex: a novel arena for quantum theory , 2016, 1612.03234.

[15]  Bernhard G. Bodmann,et al.  Decoherence-Insensitive Quantum Communication by Optimal $C^{\ast }$-Encoding , 2007, IEEE Transactions on Information Theory.

[16]  Michele Dall'Arno,et al.  Hierarchy of bounds on accessible information and informational power , 2015, 1504.04429.

[17]  Edwin C. Chaparro Sogamoso,et al.  Single plane minimal tomography of double slit qubits , 2017, 1703.04260.

[18]  Christopher Ferrie,et al.  Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.

[19]  Matthew Graydon,et al.  Conical Designs and Categorical Jordan Algebraic Post-Quantum Theories , 2017, 1703.06800.

[20]  Isaac H. Kim Quantumness, generalized 2-desing and symmetric informationally complete POVM , 2007, Quantum Inf. Comput..

[21]  Akihiro Munemasa,et al.  Equiangular lines in Euclidean spaces , 2014, J. Comb. Theory, Ser. A.

[22]  W. Wootters Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.

[23]  Ingemar Bengtsson,et al.  A remarkable representation of the Clifford group , 2011, 1202.3559.

[24]  C. Fuchs QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.

[25]  Anna Szymusiak Pure states that are `most quantum' with respect to a given POVM , 2017 .

[26]  Blake C. Stacey Geometric and Information-Theoretic Properties of the Hoggar Lines , 2016, 1609.03075.

[27]  T. Bar-on,et al.  The probability interpretation of Wigner function by SIC-POVM , 2009 .

[28]  Nicole Tomczak-Jaegermann,et al.  Norms of Minimal Projections , 1992 .

[29]  Mahdad Khatirinejad,et al.  On Weyl-Heisenberg orbits of equiangular lines , 2008 .

[30]  G. D’Ariano,et al.  Informational power of quantum measurements , 2011, 1103.1972.

[31]  Boumediene Et-Taoui Complex Conference Matrices, Complex Hadamard Matrices and Complex Equiangular Tight Frames , 2016 .

[32]  Kate Blanchfield,et al.  Geometry and foundations of quantum mechanics , 2014 .

[33]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.

[34]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[35]  D. Kaszlikowski,et al.  Minimal qubit tomography , 2004, quant-ph/0405084.

[36]  Joseph M. Renes,et al.  Frames, Designs, and Spherical Codes in Quantum Information Theory , 2004 .

[37]  Frédéric Hélein,et al.  Curved Space-Times by Crystallization of Liquid Fiber Bundles , 2015, 1508.07765.

[38]  Markus Grassl,et al.  The monomial representations of the Clifford group , 2011, Quantum Inf. Comput..

[39]  Christopher A. Fuchs,et al.  Some Negative Remarks on Operational Approaches to Quantum Theory , 2014, 1401.7254.

[40]  Christopher A. Fuchs,et al.  Notwithstanding Bohr, the Reasons for QBism , 2017, 1705.03483.

[41]  Dagomir Kaszlikowski,et al.  Efficient and robust quantum key distribution with minimal state tomography , 2008 .

[42]  Amir Kalev,et al.  Experimental proposal for symmetric minimal two-qubit state tomography , 2012 .

[43]  Shayne Waldron,et al.  Tight frames for cyclotomic fields and other rational vector spaces , 2015 .

[44]  David Marcus Appleby,et al.  Entanglement and designs , 2015, 1507.07881.

[45]  D. Goyeneche,et al.  Quantum measurements with prescribed symmetry , 2017, 1704.04609.

[46]  Huangjun Zhu SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.

[47]  Jacques Calmet,et al.  Mathematical Methods in Computer Science: Essays in Memory of Thomas Beth , 2008, MMICS 2008.

[48]  Yuan Xu,et al.  Cubature Formulas on Spheres , 2013 .

[49]  Masahide Sasaki,et al.  Squeezing quantum information through a classical channel: measuring the "quantumness" of a set of quantum states , 2003, Quantum Inf. Comput..

[50]  Guang-Can Guo,et al.  Experimental realisation of generalised qubit measurements based on quantum walks , 2015, 1501.05096.

[51]  Mark Howard,et al.  Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing. , 2016, Physical review letters.

[52]  Huangjun Zhu Tomographic and Lie algebraic significance of generalized symmetric informationally complete measurements , 2014 .

[53]  Shayne Waldron,et al.  Constructing exact symmetric informationally complete measurements from numerical solutions , 2017, 1703.05981.

[54]  Blake C. Stacey,et al.  My Struggles with the Block Universe , 2014, 1405.2390.

[55]  A. J. Scott SICs: Extending the list of solutions , 2017 .

[56]  S. G. Hoggar 64 Lines from a Quaternionic Polytope , 1998 .

[57]  D. Goyeneche,et al.  Quantum tomography meets dynamical systems and bifurcations theory , 2014 .

[58]  Shayne Waldron,et al.  Nice error frames, canonical abstract error groups and the construction of SICs , 2017 .

[59]  Paul Busch,et al.  Operational link between mutually unbiased bases and symmetric informationally complete positive operator-valued measures , 2013 .

[60]  Ingemar Bengtsson,et al.  From SICs and MUBs to Eddington , 2010, 1103.2030.

[61]  Ingemar Bengtsson,et al.  A Kochen–Specker inequality from a SIC , 2011, 1109.6514.

[62]  D. M. Appleby,et al.  Properties of QBist State Spaces , 2009, 0910.2750.

[63]  C. Fuchs,et al.  Negativity Bounds for Weyl–Heisenberg Quasiprobability Representations , 2017, Foundations of Physics.

[64]  Wojciech Slomczynski,et al.  Highly symmetric POVMs and their informational power , 2014, Quantum Inf. Process..

[65]  Markus Grassl,et al.  Computing Equiangular Lines in Complex Space , 2008, MMICS.

[66]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[67]  M. Dall’Arno Accessible information and informational power of quantum 2-designs , 2014, 1409.0341.

[68]  Blake C. Stacey,et al.  QBism: Quantum Theory as a Hero's Handbook , 2016, 1612.07308.

[69]  H. Coxeter,et al.  Regular Complex Polytopes , 1991 .

[70]  Dénes Petz,et al.  Conditional SIC-POVMs , 2012, IEEE Transactions on Information Theory.

[71]  Wojciech Słomczyński,et al.  Informational power of the Hoggar symmetric informationally complete positive operator-valued measure , 2016 .

[72]  J. V. Corbett,et al.  About SIC POVMs and discrete Wigner distributions , 2005 .

[73]  Alexey E. Rastegin,et al.  Notes on general SIC-POVMs , 2013, 1307.2334.

[74]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[75]  Leonardo Ermann,et al.  Phase-space representations of SIC-POVM fiducial states , 2016, 1612.02351.

[76]  Andreas Blass,et al.  Negative probability , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[77]  Jian Li,et al.  Experimental realization of a single qubit SIC POVM on via a one-dimensional photonic quantum walk , 2014 .

[78]  Aleksandrs Belovs,et al.  Welch Bounds and Quantum State Tomography , 2008 .

[79]  Michel Planat,et al.  Magic informationally complete POVMs with permutations , 2017, Royal Society Open Science.

[80]  D'enes Petz,et al.  Optimal quantum-state tomography with known parameters , 2012, 1511.06666.

[81]  Blake C. Stacey SIC-POVMs and Compatibility among Quantum States , 2016 .

[82]  Dustin G. Mixon,et al.  Steiner equiangular tight frames , 2010, 1009.5730.

[83]  Jose Ignacio Rosado PROBING THE GEOMETRY OF QUANTUM STATES WITH SYMMETRIC POVMS , 2013 .

[84]  R. Boyd,et al.  Experimental Realization of Quantum Tomography of Photonic Qudits via Symmetric Informationally Complete Positive Operator-Valued Measures , 2015 .

[85]  Dustin G. Mixon,et al.  Sparse Signal Processing with Frame Theory , 2012, ArXiv.

[86]  Marcus Appleby,et al.  Generating ray class fields of real quadratic fields via complex equiangular lines , 2016, Acta Arithmetica.

[87]  E. Bagan,et al.  Optimal signal states for quantum detectors , 2011, 1103.2365.

[88]  Markus Grassl Tomography of Quantum States in Small Dimensions , 2005, Electron. Notes Discret. Math..

[89]  Tao Li,et al.  General SIC measurement-based entanglement detection , 2014, Quantum Inf. Process..

[90]  T. Durt,et al.  Wigner tomography of two-qubit states and quantum cryptography , 2008, 0806.0272.

[91]  S. G. Hoggar Two Quaternionic 4-Polytopes , 1981 .

[92]  Amir Kalev,et al.  Symmetric minimal quantum tomography by successive measurements , 2012 .

[93]  B Et-Taoui,et al.  Equiangular lines in Cr , 2000 .

[94]  Christopher A. Fuchs,et al.  Group theoretic, lie algebraic and Jordan algebraic formulations of the sic existence problem , 2013, Quantum Inf. Comput..

[95]  Helen J. Elwood,et al.  Complex equiangular Parseval frames and Seidel matrices containing $p$th roots of unity , 2010 .

[96]  J. Rosado Representation of Quantum States as Points in a Probability Simplex Associated to a SIC-POVM , 2010, 1007.0715.

[97]  Gelo Noel Tabia,et al.  Geometry of Quantum States from Symmetric Informationally Complete Probabilities , 2013 .

[98]  Blake C. Stacey Multiscale Structure in Eco-Evolutionary Dynamics , 2015, 1509.02958.

[99]  Huangjun Zhu,et al.  Quantum state tomography with fully symmetric measurements and product measurements , 2011 .

[100]  Matthew A. Graydon Quaternionic Quantum Dynamics on Complex Hilbert Spaces , 2013 .

[101]  Amir Kalev,et al.  Construction of all general symmetric informationally complete measurements , 2013, 1305.6545.

[102]  Mahdad Khatirinejad Fard Regular structures of lines in complex spaces , 2008 .

[103]  Peter Keevash,et al.  Equiangular lines and spherical codes in Euclidean space , 2017, Inventiones mathematicae.

[104]  A. J. Scott,et al.  Fibonacci-Lucas SIC-POVMs , 2017, 1707.02944.

[105]  Huangjun Zhu,et al.  Quasiprobability Representations of Quantum Mechanics with Minimal Negativity. , 2016, Physical review letters.

[106]  Huangjun Zhu,et al.  Mutually unbiased bases as minimal Clifford covariant 2-designs , 2015, 1505.01123.

[107]  A. E. Rastegin,et al.  Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies , 2013, 1303.4467.

[108]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[109]  D. M. Appleby Symmetric informationally complete measurements of arbitrary rank , 2007 .

[110]  Amir Kalev,et al.  Experimental Study of Optimal Measurements for Quantum State Tomography. , 2017, Physical review letters.

[111]  Jonathan Jedwab,et al.  Constructions of complex equiangular lines from mutually unbiased bases , 2014, Des. Codes Cryptogr..

[112]  David Marcus Appleby,et al.  Exploring the geometry of qutrit state space using symmetric informationally complete probabilities , 2013, 1304.8075.

[113]  Claudio Carmeli,et al.  Sequential measurements of conjugate observables , 2011, 1105.4976.

[114]  A. Acín,et al.  Simulating Positive-Operator-Valued Measures with Projective Measurements. , 2016, Physical review letters.

[115]  A. Klappenecker,et al.  On approximately symmetric informationally complete positive operator-valued measures and related systems of quantum states , 2005, quant-ph/0503239.

[116]  Shayne Waldron Frames for vector spaces and affine spaces , 2011 .

[117]  J. Seidel,et al.  BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .

[118]  David Marcus Appleby,et al.  Linear dependencies in Weyl–Heisenberg orbits , 2013, Quantum Inf. Process..

[119]  P. Jordan,et al.  WEYL ENTERING THE ’NEW’ QUANTUM MECHANICS DISCOURSE † , 2007 .

[120]  Jeremy Gray,et al.  The Hilbert Challenge , 2001 .

[121]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[122]  Walter T. Strunz,et al.  Geometric characterization of true quantum decoherence , 2015, 1508.04027.

[123]  Joseph M. Renes,et al.  Equiangular spherical codes in quantum cryptography , 2004, Quantum Inf. Comput..

[124]  P. K. Aravind MUBs and SIC-POVMs of a spin-1 system from the Majorana approach , 2017, 1707.02601.

[125]  G. Tabia,et al.  Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices , 2012 .

[126]  Henry Cohn,et al.  Optimal simplices and codes in projective spaces , 2013, 1308.3188.

[127]  John van de Wetering,et al.  Quantum Theory is a Quasi-stochastic Process Theory , 2017 .

[128]  Paul Busch,et al.  An operational link between MUBs and SICs , 2013, 1306.6002.

[129]  D. Goyeneche,et al.  Quantum state reconstruction from dynamical systems theory , 2011 .

[130]  C. Baldwin,et al.  Efficient and Robust Methods for Quantum Tomography , 2017, 1701.01764.

[131]  Peter G. Casazza,et al.  Associating vectors in $\CC^n$ with rank 2 projections in $\RR^{2n}$: with applications , 2017, 1703.02657.

[132]  Michele Dall'Arno,et al.  Tight bounds on accessible information and informational power , 2014 .

[133]  X. Duan,et al.  Entanglement detection via some classes of measurements , 2015, 1509.00078.

[134]  Adan Cabello Minimal proofs of state-independent contextuality , 2012 .

[135]  David Marcus Appleby,et al.  Properties of the extended Clifford group with applications to SIC-POVMs and MUBs , 2009, 0909.5233.

[136]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[137]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[138]  Denes Petz,et al.  Efficient quantum tomography needs complementary and symmetric measurements , 2010, 1011.5210.

[139]  Blake C. Stacey Sporadic SICs and the Normed Division Algebras , 2016 .

[140]  R. Balan,et al.  Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .

[141]  Ingemar Bengtsson,et al.  States that are far from being stabilizer states , 2014, 1412.8181.

[142]  Hoan Bui Dang,et al.  Studies of symmetries that give special quantum states the "right to exist" , 2015, 1508.02703.

[143]  Vladimir I. Man’ko,et al.  Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics , 2010, 1005.4091.

[144]  Klaus Hulek,et al.  Projective geometry of elliptic curves , 1986 .

[145]  A. Winter,et al.  Distinguishability of Quantum States Under Restricted Families of Measurements with an Application to Quantum Data Hiding , 2008, 0810.2327.

[146]  H. Yadsan-Appleby,et al.  Gaussian and covariant processes in discrete and continuous variable quantum information , 2013 .

[147]  M. Dall’Arno,et al.  Communication capacity of mixed quantum t -designs , 2016, 1603.06320.

[148]  Ingemar Bengtsson,et al.  The Number Behind the Simplest SIC–POVM , 2016, Foundations of Physics.

[149]  Xiwang Cao,et al.  Two constructions of approximately symmetric informationally complete positive operator-valued measures , 2017 .

[150]  Peter G. Casazza,et al.  Finite Frames: Theory and Applications , 2012 .

[151]  David Marcus Appleby,et al.  Galois automorphisms of a symmetric measurement , 2012, Quantum Inf. Comput..

[152]  Y. S. Teo,et al.  Two-qubit symmetric informationally complete positive-operator-valued measures , 2010 .

[153]  Jonathan Jedwab,et al.  A Simple Construction of Complex Equiangular Lines , 2014, 1408.2492.

[154]  Barry C. Sanders,et al.  Quantification and manipulation of magic states , 2017, Physical Review A.

[155]  R. Renner,et al.  A de Finetti representation for finite symmetric quantum states , 2004, quant-ph/0410229.

[156]  G. Zauner,et al.  QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .

[157]  Aidan Roy,et al.  Equiangular lines, mutually unbiased bases, and spin models , 2009, Eur. J. Comb..

[158]  H. S. M. Coxeter,et al.  The Polytope 2 21 Whose Twenty-Seven Vertices Correspond to the Lines to the General Cubic Surface , 1940 .

[159]  Hong-Yi Su,et al.  State-independent contextuality sets for a qutrit , 2015, 1501.01746.

[160]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[161]  Gary McConnell Some non-standard ways to generate SIC-POVMs in dimensions 2 and 3 , 2014 .

[162]  Timothy C. Ralph,et al.  Quantum Communication, Measurement and Computing (QCMC): The Tenth International Conference , 2011 .

[163]  Christopher A. Fuchs Charting the Shape of Quantum-State Space , 2011 .

[164]  Erhard Scholz,et al.  Introducing groups into quantum theory (1926¿1930) , 2004 .

[165]  T. Bar-on,et al.  Discrete Wigner function by symmetric informationally complete positive operator valued measure , 2009 .

[166]  Christopher A. Fuchs,et al.  Symmetric Informationally-Complete Quantum States as Analogues to Orthonormal Bases and Minimum-Uncertainty States , 2007, Entropy.

[167]  David Marcus Appleby,et al.  The Lie Algebraic Significance of Symmetric Informationally Complete Measurements , 2009, 1001.0004.

[168]  K. Życzkowski,et al.  On discrete structures in finite Hilbert spaces , 2017, 1701.07902.

[169]  Romanos Malikiosis,et al.  Spark deficient Gabor frames , 2016, 1602.09012.

[170]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[171]  Leonardo Ermann,et al.  Phase-space representations of symmetric informationally complete positive-operator-valued-measure fiducial states , 2017 .

[172]  Marcus Appleby,et al.  SICs and Algebraic Number Theory , 2017, 1701.05200.

[173]  Aephraim M. Steinberg,et al.  Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .

[174]  Bruce Hunt,et al.  The 27 lines on a cubic surface , 1996 .

[175]  Xinhua Peng,et al.  Realization of entanglement-assisted qubit-covariant symmetric-informationally-complete positive-operator-valued measurements , 2006 .

[176]  Christopher A. Fuchs,et al.  On the quantumness of a hilbert space , 2004, Quantum information & computation.

[177]  Bernhard G. Bodmann,et al.  Frames for linear reconstruction without phase , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[178]  Andrei Khrennikov,et al.  Aims and Scope of the Special Issue, “Quantum Foundations: Informational Perspective” , 2017 .

[179]  Shayne Waldron,et al.  SOME REMARKS ON HEISENBERG FRAMES AND SETS OF EQUIANGULAR LINES , 2007 .

[180]  Anna Szymusiak Maximally informative ensembles for SIC-POVMs in dimension 3 , 2014, 1405.0052.

[181]  A. Robert Calderbank,et al.  The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..

[182]  M. Grassl On SIC-POVMs and MUBs in Dimension 6 , 2004, quant-ph/0406175.

[183]  Isaac H. Kim Quamtumness, Generalized Spherical 2-Design and Symmetric Informationally Complete POVM , 2006 .

[184]  C. Fuchs,et al.  A Quantum-Bayesian Route to Quantum-State Space , 2009, 0912.4252.

[185]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.

[186]  Shayne Waldron,et al.  Group frames , 2012 .

[187]  Tuan-Yow Chien,et al.  Equiangular lines, projective symmetries and nice error frames , 2015 .

[188]  O. Albouy,et al.  A unified approach to SIC-POVMs and MUBs , 2007 .

[189]  B. Et-Taoui Equiangular lines in Cr (part II) , 2002 .

[190]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.

[191]  Matthew Fickus Maximally Equiangular Frames and Gauss Sums , 2009 .

[192]  Steven T. Flammia On SIC-POVMs in prime dimensions , 2006 .

[193]  Huangjun Zhu,et al.  Super-symmetric informationally complete measurements , 2014, 1412.1099.