Shaping the archipelago of stability by the competition of proton and neutron shell closures

The evolution of superheavy nuclei in proton and neutron number is explored by investigating the ground-state shell correction energy in the $Z=112\text{--}126$ and $N=170\text{--}190$ region of the $(Z,N)$ plane. Cuts through the $(Z,N)$-dependent distribution of shell corrections are chosen for constant neutron-proton differences as accessible in $\ensuremath{\alpha}$-decay chains and varying the neutron number at fixed charge number. A new approach is used, integrating elements of energy-density functional theory into the microscopic-macroscopic method. The topology of the shell correction implies for binding energies a distribution resembling in shape a ridge on a coral reef, formed by the competition of proton and neutron shell closures at $Z=114$ and $Z=120$, and $N=174$ and $N=184$, respectively. $^{288}\mathrm{Fl}$ is predicted as the next double magic nucleus after $^{208}\mathrm{Pb}$, and $^{304}120$ is identified as the most likely candidate for next-to-next double magic nucleus.

[1]  Shan-Gui Zhou,et al.  Self-consistent methods for structure and production of heavy and superheavy nuclei , 2021, The European Physical Journal A.

[2]  R. Clark,et al.  Spectroscopy along Flerovium Decay Chains: Discovery of ^{280}Ds and an Excited State in ^{282}Cn. , 2021, Physical review letters.

[3]  M. Kowal,et al.  Properties of heaviest nuclei with 98≤Z≤126 and 134≤N≤192 , 2020, 2010.10018.

[4]  H. Lenske,et al.  Predictions of identification and production of new superheavy nuclei with Z=119 and 120 , 2020 .

[5]  H. Lenske,et al.  Dissolution of shell structures and the polarizability of dripline nuclei , 2019 .

[6]  Shan-Gui Zhou,et al.  Incorporating self-consistent single-particle potentials into the microscopic-macroscopic method , 2018, The European Physical Journal A.

[7]  R. Jolos,et al.  Nonrotational states in isotonic chains of heavy nuclei , 2018 .

[8]  G. K. Vostokin,et al.  Neutron-deficient superheavy nuclei obtained in the Pu240+Ca48 reaction , 2018 .

[9]  A. Yeremin,et al.  Review of even element super-heavy nuclei and search for element 120 , 2016 .

[10]  V. K. Utyonkov,et al.  Superheavy nuclei from 48 Ca-induced reactions , 2015 .

[11]  G. K. Vostokin,et al.  Experiments on the synthesis of superheavy nuclei Fl 284 and Fl 285 in the Pu 239,240 + Ca 48 reactions , 2015 .

[12]  H. Sagawa,et al.  Nuclear ground-state masses and deformations: FRDM(2012) , 2015, 1508.06294.

[13]  J. Meng,et al.  Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum , 2015, 1507.01079.

[14]  Y. Oganessian,et al.  Super-heavy element research , 2015, Reports on progress in physics. Physical Society.

[15]  D. Ward,et al.  48Ca+249Bk fusion reaction leading to element Z = 117: long-lived α-decaying 270Db and discovery of 266Lr. , 2014, Physical review letters.

[16]  G. K. Vostokin,et al.  Experimental studies of the 249 Bk + 48 Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277 Mt , 2013 .

[17]  G. K. Vostokin,et al.  Synthesis and study of decay properties of the doubly magic nucleus 270 Hs in the 226 Ra + 48 Ca reaction , 2013 .

[18]  J. Meng,et al.  Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation , 2013, 1301.1808.

[19]  G. K. Vostokin,et al.  Investigation of the $^{243}$Am+$^{48}$Ca reaction products previously observed in the experiments on elements 113, 115, and 117 , 2013 .

[20]  W. Scheid,et al.  Influence of proton shell closure on production and identification of new superheavy nuclei , 2012 .

[21]  W. Scheid,et al.  One-quasiparticle states in odd-Z heavy nuclei , 2010 .

[22]  G. K. Vostokin,et al.  Synthesis of a new element with atomic number Z = 117. , 2010, Physical review letters.

[23]  W. Scheid,et al.  High-spin isomers in some of the heaviest nuclei: Spectra, decays, and population , 2010 .

[24]  J. Gates,et al.  Production and decay of element 114: high cross sections and the new nucleus 277Hs. , 2009, Physical review letters.

[25]  P. Ellison,et al.  Independent Verification of Element 114 Production in the Ca-48 + Pu-242 Reaction , 2009 .

[26]  H. Lenske,et al.  Investigation of Pygmy Dipole Resonances in the Tin Region , 2007, 0706.4204.

[27]  M. Baldo,et al.  Kohn–Sham density functional inspired approach to nuclear binding , 2007, 0706.0658.

[28]  S. L. Nelson,et al.  The reaction 48Ca + 248Cm → 296116* studied at the GSI-SHIP , 2007, The European Physical Journal A.

[29]  G. K. Vostokin,et al.  Chemical characterization of element 112 , 2007, Nature.

[30]  Y. Oganessian,et al.  TOPICAL REVIEW: Heaviest nuclei from 48 Ca-induced reactions , 2007 .

[31]  A. Sobiczewski,et al.  Description of structure and properties of superheavy nuclei , 2007 .

[32]  Peter Ring,et al.  Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure , 2005 .

[33]  X. Vinas,et al.  Superheavy nuclei in a relativistic effective Lagrangian model , 2003, nucl-th/0310010.

[34]  P. Ring,et al.  Spherical relativistic Hartree theory in a Woods-Saxon basis , 2003, nucl-th/0303031.

[35]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[36]  Moscow,et al.  Nuclear isotope shifts within the local energy-density functional approach , 2000, nucl-th/0101012.

[37]  P. Ring,et al.  Relativistic Hartree-Bogoliubov description of ground-state properties of Ni and Sn isotopes , 1997, nucl-th/9712034.

[38]  F. Hofmann,et al.  Hartree-Fock calculations in the density matrix expansion approach , 1997, nucl-th/9705049.

[39]  Peter Ring,et al.  Relativistic mean field theory in finite nuclei , 1996 .

[40]  H. Sagawa,et al.  Isovector properties of Skyrme-type effective interactions , 1995 .

[41]  C. Fuchs,et al.  Rearrangement in the density dependent relativistic field theory of nuclei , 1995 .

[42]  P. Reinhard REVIEW ARTICLE: The relativistic mean-field description of nuclei and nuclear dynamics , 1989 .