Compression of digital holograms for three-dimensional object reconstruction and recognition.

We present the results of applying lossless and lossy data compression to a three-dimensional object reconstruction and recognition technique based on phase-shift digital holography. We find that the best lossless (Lempel-Ziv, Lempel-Ziv-Welch, Huffman, Burrows-Wheeler) compression rates can be expected when the digital hologram is stored in an intermediate coding of separate data streams for real and imaginary components. The lossy techniques are based on subsampling, quantization, and discrete Fourier transformation. For various degrees of speckle reduction, we quantify the number of Fourier coefficients that can be removed from the hologram domain, and the lowest level of quantization achievable, without incurring significant loss in correlation performance or significant error in the reconstructed object domain.

[1]  O. Bryngdahl,et al.  I Digital Holography – Computer-Generated Holograms , 1990 .

[2]  R. W. Lawrence,et al.  Digital Image Formation From Electronically Detected Holograms , 1967 .

[3]  Bahram Javidi,et al.  Digital holographic data reconstruction with data compression , 2001, Optics + Photonics.

[4]  Philippe Refregier,et al.  Statistical processing of polarization diversity images , 2001, Other Conferences.

[5]  I. Yamaguchi,et al.  Phase-shifting digital holography. , 1997, Optics letters.

[6]  B Javidi,et al.  Three-dimensional object recognition by use of digital holography. , 2000, Optics letters.

[7]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[8]  D. J. Brangaccio,et al.  Digital wavefront measuring interferometer for testing optical surfaces and lenses. , 1974, Applied optics.

[9]  Joseph W. Goodman,et al.  Bounds on the performance of continuous and quantized phase-only matched filters , 1990 .

[10]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[11]  A. Lohmann,et al.  Phase quantization in holograms-depth effects. , 1972, Applied optics.

[12]  A. B. Vander Lugt,et al.  Signal detection by complex spatial filtering , 1964, IEEE Trans. Inf. Theory.

[13]  J. Goodman Introduction to Fourier optics , 1969 .

[14]  M W Marcellin,et al.  Three-dimensional image compression with integer wavelet transforms. , 2000, Applied optics.

[15]  Shen-En Qian,et al.  Fast three‐dimensional data compression of hyperspectral imagery using vector quantization with spectral‐feature‐based binary coding , 1996 .

[16]  Antonio Verga,et al.  Fast Fourier transform based image compression algorithm optimized for speckle interferometer measurements , 1997 .

[17]  B. Javidi Nonlinear joint power spectrum based optical correlation. , 1989, Applied optics.

[18]  J. Goodman,et al.  Some effects of Fourier-domain phase quantization , 1970 .

[19]  O. Bryngdahl,et al.  Speckle-free reconstruction in digital holography , 1989 .

[20]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[21]  D. J. Wheeler,et al.  A Block-sorting Lossless Data Compression Algorithm , 1994 .

[22]  J W Goodman,et al.  Discrete cosine transform domain restoration of defocused images. , 1998, Applied optics.

[23]  Majid Rabbani,et al.  Selected papers on image coding and compression , 1992 .

[24]  Alastair D. McAulay,et al.  Optical computer architectures , 1991 .

[25]  Fionn Murtagh,et al.  Very‐high‐quality image compression based on noise modeling , 1998 .

[26]  J García,et al.  Three-dimensional object recognition by fourier transform profilometry. , 1999, Applied optics.

[27]  J Rosen,et al.  Three-dimensional joint transform correlator. , 1998, Applied optics.

[28]  Gary J. Ewing,et al.  COMPARISON OF JPEG AND FRACTAL-BASED IMAGE COMPRESSION ON TARGET ACQUISITION BY HUMAN OBSERVERS , 1996 .

[29]  Richard Bamler,et al.  Three- and Four-dimensional Filter Operations by Coherent Optics , 1982 .

[30]  M Eckstein,et al.  Observer performance for JPEG vs. Wavelet image compression of x-ray coronary angiograms. , 1999, Optics express.

[31]  H. J. Caulfield Handbook of Optical Holography , 1979 .

[32]  Jaime Meneses,et al.  Object recognition using three-dimensional correlation of range images , 2000 .

[33]  Demetri Psaltis,et al.  Real-time vehicle navigation using a holographic memory , 1997 .

[34]  J F Walkup,et al.  Image compression in signal-dependent noise. , 1999, Applied optics.

[35]  B Javidi,et al.  Distortion-tolerant three-dimensional object recognition with digital holography. , 2001, Applied optics.