Stochastic gradient processes: A survey of convergence theory using lyapunov second method
暂无分享,去创建一个
[1] Yuri Ermoliev,et al. Stochastic Programming Methods , 1976 .
[2] G. Saridis. Stochastic approximation methods for identification and control--A survey , 1974 .
[3] R. Bucy,et al. Stability and positive supermartingales , 1965 .
[4] Extremal problems with rare events. I , 1990 .
[5] M. T. Wasan. Stochastic Approximation , 1969 .
[6] Andrzej Ruszczyński,et al. On convergence of the stochastic subgradient method with on-line stepsize rules , 1986 .
[7] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[8] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[9] A. Nakonechnyi. Probability-theoretical generalization of the second lyapunov method , 1993 .
[10] K. A. Bush. Orthogonal Arrays of Index Unity , 1952 .
[11] Yu. M. Ermol’ev. Stochastic models and methods of optimization , 1975 .
[12] A. Nakonechnyi. Iterative processes: A survey of convergence theory using Lyapunov second method , 1994 .
[13] H. Kesten. Accelerated Stochastic Approximation , 1958 .
[14] B. V. Dean,et al. Studies in Linear and Non-Linear Programming. , 1959 .
[15] J. Blum. Multidimensional Stochastic Approximation Methods , 1954 .
[16] J. Kiefer,et al. Stochastic Estimation of the Maximum of a Regression Function , 1952 .
[17] D. Siljak,et al. Convergence and stability of distributed stochastic iterative processes , 1990 .
[18] A. Nakonechnyi. Probability-theoretical analog of the vector lyapunov function method , 1994 .
[19] J. Doob. Stochastic processes , 1953 .
[20] A. Nakonechnyi. Extremal problems with rare events. II (method of successive random approximations) , 1992 .