Stochastic gradient processes: A survey of convergence theory using lyapunov second method

[1]  Yuri Ermoliev,et al.  Stochastic Programming Methods , 1976 .

[2]  G. Saridis Stochastic approximation methods for identification and control--A survey , 1974 .

[3]  R. Bucy,et al.  Stability and positive supermartingales , 1965 .

[4]  Extremal problems with rare events. I , 1990 .

[5]  M. T. Wasan Stochastic Approximation , 1969 .

[6]  Andrzej Ruszczyński,et al.  On convergence of the stochastic subgradient method with on-line stepsize rules , 1986 .

[7]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[8]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[9]  A. Nakonechnyi Probability-theoretical generalization of the second lyapunov method , 1993 .

[10]  K. A. Bush Orthogonal Arrays of Index Unity , 1952 .

[11]  Yu. M. Ermol’ev Stochastic models and methods of optimization , 1975 .

[12]  A. Nakonechnyi Iterative processes: A survey of convergence theory using Lyapunov second method , 1994 .

[13]  H. Kesten Accelerated Stochastic Approximation , 1958 .

[14]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[15]  J. Blum Multidimensional Stochastic Approximation Methods , 1954 .

[16]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[17]  D. Siljak,et al.  Convergence and stability of distributed stochastic iterative processes , 1990 .

[18]  A. Nakonechnyi Probability-theoretical analog of the vector lyapunov function method , 1994 .

[19]  J. Doob Stochastic processes , 1953 .

[20]  A. Nakonechnyi Extremal problems with rare events. II (method of successive random approximations) , 1992 .