Collisionless Sound in a Uniform Two-Dimensional Bose Gas.

Using linear response theory within the random phase approximation, we investigate the propagation of sound in a uniform two dimensional (2D) Bose gas in the collisionless regime. We show that the sudden removal of a static density perturbation produces a damped oscillatory behavior revealing that sound can propagate also in the absence of collisions, due to mean-field interaction effects. We provide explicit results for the sound velocity and damping as a function of temperature, pointing out the crucial role played by Landau damping. We support our predictions by performing numerical simulations with the stochastic (projected) Gross-Pitaevskii equation. The results are consistent with the recent experimental observation of sound in a weakly interacting 2D Bose gas both below and above the superfluid Berezinskii-Kosterlitz-Thouless transition.

[1]  H. Haubeck COMP , 2019, Springer Reference Medizin.

[2]  J. Dalibard,et al.  Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas. , 2018, Physical review letters.

[3]  S. Stringari,et al.  Second sound in a two-dimensional Bose gas: From the weakly to the strongly interacting regime , 2018 .

[4]  P. Littlewood,et al.  Universal Themes of Bose-Einstein Condensation , 2017 .

[5]  Sandro Stringari,et al.  Bose-Einstein condensation and superfluidity , 2016 .

[6]  S. Stringari,et al.  Hybridization of first and second sound in a weakly-interacting Bose gas , 2015, 1506.06690.

[7]  T. Ozawa,et al.  Discontinuities in the first and second sound velocities at the Berezinskii-Kosterlitz-Thouless transition. , 2013, Physical review letters.

[8]  R. Grimm,et al.  Second sound and the superfluid fraction in a Fermi gas with resonant interactions , 2013, Nature.

[9]  S. Tung,et al.  Strongly interacting two-dimensional Bose gases. , 2012, Physical review letters.

[10]  Joseph J. Hope,et al.  XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations , 2012, Comput. Phys. Commun..

[11]  N. Dupuis,et al.  Universal thermodynamics of a two-dimensional Bose gas , 2012, 1203.1788.

[12]  W. Marsden I and J , 2012 .

[13]  J. Dalibard,et al.  Exploring the thermodynamics of a two-dimensional Bose gas. , 2011, Physical review letters.

[14]  S. Stringari,et al.  Second sound and the density response function in uniform superfluid atomic gases , 2010, 1001.0772.

[15]  J. Dalibard,et al.  Two-dimensional Bose fluids: An atomic physics perspective , 2009, 0912.1490.

[16]  P. Straten,et al.  Sound propagation in a Bose-Einstein condensate at finite temperatures , 2009, 0909.3455.

[17]  P. B. Blakie,et al.  Quantitative test of the mean-field description of a trapped two-dimensional Bose gas , 2009, 0908.3052.

[18]  T. Nikuni,et al.  Propagation of second sound in a superfluid Fermi gas in the unitary limit , 2009, 0907.2743.

[19]  T. Simula,et al.  Quasicondensation and coherence in the quasi-two-dimensional trapped Bose gas , 2008, 0804.0286.

[20]  Allan Griffin,et al.  Bose-Condensed Gases at Finite Temperatures: Index , 2009 .

[21]  M. Chung,et al.  Damping in 2D and 3D dilute Bose gases , 2008, 0809.3632.

[22]  C. W. Gardiner,et al.  Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques , 2008, 0809.1487.

[23]  J. Schmiedmayer,et al.  Quasicondensate growth on an atom chip , 2005, cond-mat/0509154.

[24]  B. Svistunov,et al.  Two-dimensional weakly interacting Bose gas in the fluctuation region , 2002, cond-mat/0206223.

[25]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[26]  B. Svistunov,et al.  Critical point of a weakly interacting two-dimensional Bose gas. , 2001, Physical review letters.

[27]  G. Shlyapnikov,et al.  Interatomic collisions in a tightly confined Bose gas , 2000, cond-mat/0012091.

[28]  K. Burnett,et al.  Simulations of Bose fields at finite temperature. , 2000, Physical review letters.

[29]  S. Stringari,et al.  Moment of inertia and quadrupole response function of a trapped superfluid , 2000, cond-mat/0004325.

[30]  H. Stoof,et al.  Dynamics of Fluctuating Bose–Einstein Condensates , 2000, cond-mat/0007026.

[31]  Dallin S. Durfee,et al.  Propagation of Sound in a Bose-Einstein Condensate , 1997 .

[32]  A. Griffin,et al.  First and second sound in a uniform Bose gas , 1997, cond-mat/9707058.

[33]  David E. Miller,et al.  Quantum Statistical Mechanics , 2002 .

[34]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[35]  D. Pines,et al.  The theory of quantum liquids , 1968 .

[36]  P. Hohenberg Existence of Long-Range Order in One and Two Dimensions , 1967 .

[37]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[38]  Isaak M. Khalatnikov,et al.  An introduction to the theory of superfluidity , 1965 .