Optimal self-dual Z4-codes and a unimodular lattice in dimension 41

For lengths up to 47 except 37, we determine the largest minimum Euclidean weight among all Type I Z4-codes of that length. We also give the first example of an optimal odd unimodular lattice in dimension 41 explicitly, which is constructed from some Type I Z4-code of length 41.

[1]  Eric M. Rains Optimal self-dual codes over Z4 , 1999, Discret. Math..

[2]  Masaaki Harada Self-dual Z4-codes and Hadamard matrices , 2002, Discret. Math..

[3]  Masaaki Harada,et al.  An Optimal Unimodular Lattice in Dimension 39 , 1999, J. Comb. Theory, Ser. A.

[4]  Masaaki Harada,et al.  Shadow Codes over Z4 , 2001 .

[5]  Richard E. Borcherds,et al.  The Leech lattice and other lattices , 1999 .

[6]  Masaaki Harada Extremal odd unimodular lattices in dimensions 44, 46 and 47 , 2003 .

[7]  François Sigrist Sphere packing , 1983 .

[8]  Masaaki Harada,et al.  Self-Dual Codes over Z 4 and Unimodular Lattices : A Survey , 2002 .

[9]  J. H. Conway,et al.  A Note on Optimal Unimodular Lattices , 1998 .

[10]  N. J. A. Sloane,et al.  Self-Dual Codes over the Integers Modulo 4 , 1993, J. Comb. Theory, Ser. A.

[11]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[12]  W. Bosma,et al.  HANDBOOK OF MAGMA FUNCTIONS , 2011 .

[13]  Vera Pless,et al.  Type II Codes over , 2002 .

[14]  Akihiro Munemasa,et al.  On some self-dual codes and unimodular lattices in dimension 48 , 2005, Eur. J. Comb..

[15]  Vera Pless,et al.  All Z4 Codes of Type II and Length 16 Are Known , 1997, J. Comb. Theory, Ser. A.

[16]  N. Sloane,et al.  The Shadow Theory of Modular and Unimodular Lattices , 1998, math/0207294.

[17]  Christine Bachoc,et al.  Type II codes over Z4 , 1997, IEEE Trans. Inf. Theory.

[18]  Mark Gaulter,et al.  Minima of Odd Unimodular Lattices in Dimension 24m , 2001 .

[19]  Patrick Solé,et al.  EISENSTEIN LATTICES, GALOIS RINGS AND QUATERNARY CODES , 2006 .