High-Quality Source Rocks in an Underexplored Basin: The Upper Carboniferous-Permian Succession in the Zaysan Basin (Kazakhstan)

[1]  V. Meier,et al.  Coaly and lacustrine hydrocarbon source rocks in Permo-Carboniferous graben deposits (Weiach well, Northern Switzerland) , 2023, Marine and Petroleum Geology.

[2]  Wenzhe Gang,et al.  Evaluation of the tight oil “sweet spot” in the Middle Permian Lucaogou Formation (Jimusaer Sag, Junggar Basin, NW China): insights from organic petrology and geochemistry , 2023, Organic Geochemistry.

[3]  M. Wagreich,et al.  Paleoenvironmental Conditions and Factors Controlling Organic Carbon Accumulation during the Jurassic–Early Cretaceous, Egypt: Organic and Inorganic Geochemical Approach , 2022, Minerals.

[4]  C. Olariu,et al.  Conglomerate to mudstone lacustrine cycles revealed in Junggar Basin, Northwest China: Middle Permian Lucaogou and Jingjingzigou formations , 2022, Marine and Petroleum Geology.

[5]  Kristály Ferenc,et al.  Preliminary analysis on roles of metal–organic compounds in the formation of invisible gold , 2021, Acta Geochimica.

[6]  A. Pepper,et al.  Ultimate expellable potentials of source rocks from selected super basins: What does “world class” look like? , 2021 .

[7]  M. Sun,et al.  Granitoids of the Kalba batholith, Eastern Kazakhstan: U–Pb zircon age, petrogenesis and tectonic implications , 2021 .

[8]  X. Querol,et al.  Geochemical Characteristics of Early Permian Pyroclastic Rocks in the Jimunai Basin, West Junggar, Xinjiang (NW China): Implications for Provenance and Tectonic Setting , 2020, Acta Geologica Sinica - English Edition.

[9]  Xin Wu,et al.  Influence of palaeoclimate and hydrothermal activity on organic matter accumulation in lacustrine black shales from the Lower Cretaceous Bayingebi Formation of the Yin’e Basin, China , 2020 .

[10]  B. Horsfield,et al.  Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks , 2020 .

[11]  H. Sanei,et al.  Elemental Composition and Organic Petrology of a Lower Carboniferous-Age Freshwater Oil Shale in Nova Scotia, Canada , 2019, ACS omega.

[12]  T. Gentzis,et al.  Influence of igneous intrusions on the thermal maturity of organic matter in the Sverdrup Basin, Arctic Canada , 2019, International Journal of Coal Geology.

[13]  Junlai Liu,et al.  Timing of the final closure of the Irtysh–Zaysan Ocean: New insights from the earliest stitching pluton in the northern West Junggar, NW China , 2018 .

[14]  S. Grasby,et al.  Influence of igneous intrusions on thermal maturity and optical texture: Comparison between a bituminous marl and a coal seam of the same maturity , 2018, International Journal of Coal Geology.

[15]  Chiyang Liu,et al.  Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China , 2018 .

[16]  J. Conder,et al.  Redox conditions associated with organic carbon accumulation in the Late Devonian New Albany Shale, west-central Kentucky, Illinois Basin , 2017 .

[17]  K. Ogata,et al.  Effects of igneous intrusions on the petroleum system: a review , 2017 .

[18]  Chunqing Jiang,et al.  Mineral carbon MinC(%) from Rock-Eval analysis as a reliable and cost-effective measurement of carbonate contents in shale source and reservoir rocks , 2017 .

[19]  A. Bechtel,et al.  Depositional environment of oil shale within the second member of Permian Lucaogou Formation in the Santanghu Basin, Northwest China , 2017 .

[20]  Matthias D. Greb,et al.  Egypt far Western Desert basins petroleum charge system as defined by oil chemistry and unmixing analysis , 2016 .

[21]  R. Sachsenhofer,et al.  Shale gas/shale oil potential of Upper Visean Black Shales in the Dniepr-Donets Basin (Ukraine) , 2016 .

[22]  B. Horsfield,et al.  Upper Permian Junggar and Upper Triassic Ordos lacustrine source rocks in Northwest and Central China: Organic geochemistry, petroleum potential and predicted organofacies , 2016 .

[23]  Chunqing Jiang,et al.  A revised method for organic porosity estimation in shale reservoirs using Rock-Eval data, example from Duvernay Formation in the Western Canada Sedimentary Basin , 2016 .

[24]  P. Peng,et al.  Unmixing of mixed oil using chemometrics , 2016 .

[25]  Chengyun Wang,et al.  Lacustrine tight oil accumulation characteristics: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin , 2016 .

[26]  D. He,et al.  Carboniferous–Permian tectonic framework and its later modifications to the area from eastern Kazakhstan to southern Altai: Insights from the Zaysan–Jimunai Basin evolution , 2015 .

[27]  Jianguo Du,et al.  Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China , 2015 .

[28]  J. Disnar,et al.  Guidelines for Rock-Eval analysis of recent marine sediments , 2015 .

[29]  G. Blackbourn The Petroleum Geology of Kazakhstan , 2015 .

[30]  S. Strobl,et al.  Depositional environment of oil shale within the Eocene Jijuntun Formation in the Fushun Basin (NE China) , 2014 .

[31]  B. Katz,et al.  Lacustrine basin unconventional resource plays: Key differences , 2014 .

[32]  Yongchao Lu,et al.  Sequence stratigraphy and architectural variability in Late Eocene lacustrine strata of the Dongying Depression, Bohai Bay Basin, Eastern China , 2013 .

[33]  D. Delvaux,et al.  Basin evolution in a folding lithosphere: Altai-Sayan and Tien Shan belts in Central Asia , 2013 .

[34]  Y. Duan Geochemical characteristics of crude oil in fluvial deposits from Maling oilfield of Ordos Basin, China , 2012 .

[35]  M. M. Buslov Geodynamic nature of the Baikal Rift Zone and its sedimentary filling in the Cretaceous–Cenozoic: the effect of the far-range impact of the Mongolo-Okhotsk and Indo-Eurasian collisions , 2012 .

[36]  D. Delvaux,et al.  Tectonic history of the Irtysh shear zone (NE Kazakhstan): new constraints from zircon U/Pb dating, apatite fission track dating and palaeostress analysis. , 2012 .

[37]  S. Planke,et al.  Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions , 2011 .

[38]  Ronald R. Charpentier,et al.  USGS Methodology for Assessing Continuous Petroleum Resources , 2011 .

[39]  A. Knoll,et al.  Sterols in red and green algae: quantification, phylogeny, and relevance for the interpretation of geologic steranes , 2008, Geobiology.

[40]  G. A. Babin,et al.  Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal processes , 2008 .

[41]  M. Fustic,et al.  25-Norhopanes: Formation during biodegradation of petroleum in the subsurface , 2006 .

[42]  Vadim A. Kravchinsky,et al.  Late Jurassic-Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baïkal area (SE Siberia) , 2005 .

[43]  B. Cardott,et al.  Classification of huminite—ICCP System 1994 , 2005 .

[44]  B. Dahl,et al.  Quantitative hydrocarbon potential mapping and organofacies study in the Greater Balder Area, Norwegian North Sea , 2005 .

[45]  C. Walters,et al.  The Biomarker Guide , 2004 .

[46]  E. Thomsen,et al.  A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment , 2004 .

[47]  I. Safonova,et al.  Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation , 2004 .

[48]  S. M. Rimmer Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA) , 2004 .

[49]  A. Lücke,et al.  A Lateglacial and Holocene organic carbon isotope record of lacustrine palaeoproductivity and climatic change derived from varved lake sediments of Lake Holzmaar, Germany , 2003 .

[50]  G. Isaksen,et al.  Control of hydrocarbon seepage intensity on level of biodegradation in sea bottom sediments , 2002 .

[51]  D. Delvaux,et al.  Paleomagnetic study of Cenozoic sediments from the Zaisan basin (SE Kazakhstan) and the Chuya depression (Siberian Altai): tectonic implications for central Asia , 2002 .

[52]  A. Didenko,et al.  Middle Paleozoic subduction belts: The leading factor in the formation of the Central Asian fold-and-thrust belt , 2002 .

[53]  F. Behar,et al.  Rock-Eval 6 Technology: Performances and Developments , 2001 .

[54]  B. Mayer,et al.  A 15,000-year stable isotope record from sediments of Lake Steisslingen, Southwest Germany , 1999 .

[55]  A. Carroll Upper Permian lacustrine organic facies evolution, Southern Junggar Basin, NW China , 1998 .

[56]  C. Cornford,et al.  Geochemical truths in large data sets. I: Geochemical screening data , 1998 .

[57]  William B. Hughes,et al.  The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks , 1995 .

[58]  Mark B. Allen,et al.  Junggar, Turfan and Alakol basins as Late Permian to ?Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage, Central Asia , 1995, Journal of the Geological Society.

[59]  D. Manning,et al.  Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones , 1994 .

[60]  K. Peters,et al.  Applied Source Rock Geochemistry: Chapter 5: Part II. Essential Elements , 1994 .

[61]  M. Mello,et al.  Extended tricyclic terpanes in sediments and petroleums , 1993 .

[62]  S. Calvert,et al.  Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record , 1993 .

[63]  B. Garcés Lacustrine deposition and related volcanism in a transtensional tectonic setting: Upper Stephanian-Lower Autunian in the Aragón-Béarn Basin, western Pyrenees (Spain-France) , 1993 .

[64]  S. Graham,et al.  Upper Permian lacustrine oil shales, southern Junggar Basin, Northwest China , 1992 .

[65]  J. Connan,et al.  Origin and occurrence of 25-norhopanes: a statistical study , 1992 .

[66]  G. Ulmishek,et al.  Effective Petroleum Source Rocks of the World: Stratigraphic Distribution and Controlling Depositional Factors , 1992 .

[67]  J. Leventhal,et al.  Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. , 1992 .

[68]  F. F. Langford,et al.  Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon , 1990 .

[69]  A. Raymond,et al.  Development of organic maturation in the thermal aureoles of sills and its relation to sediment compaction , 1988 .

[70]  T. Powell Pristane/phytane ratio as environmental indicator , 1988, Nature.

[71]  Kenneth E. Peters,et al.  Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis , 1986 .

[72]  D. Lowe,et al.  Stratigraphy and development of c. 17 000 year old Lake Maratoto, North Island, New Zealand, with some inferences about postglacial climatic change , 1985 .

[73]  G. Shanmugam Significance of Coniferous Rain Forests and Related Organic Matter in Generating Commercial Quantities of Oil, Gippsland Basin, Australia , 1985 .

[74]  R. Berner,et al.  C/S method for distinguishing freshwater from marine sedimentary rocks , 1984 .

[75]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[76]  Z. Sofer Stable Carbon Isotope Compositions of Crude Oils: Application to Source Depositional Environments and Petroleum Alteration , 1984 .

[77]  J. Moldowan,et al.  The effect of biodegradation on steranes and terpanes in crude oils , 1979 .

[78]  B. Simoneit,et al.  Organic geochemical indicators of palaeoenvironmental conditions of sedimentation , 1978 .

[79]  S. Brassell,et al.  Natural Background of Alkanes in the Aquatic Environment , 1978 .

[80]  P. Cranwell Organic geochemistry of Cam Loch (Sutherland) sediments , 1977 .

[81]  B. Tissot,et al.  Source rock characterization method for petroleum exploration , 1977 .

[82]  N. Kostenko Principal steps of geological development of Altay in Alpine time , 1974 .

[83]  Geoffrey Eglinton,et al.  Leaf Epicuticular Waxes , 1967, Science.

[84]  K. Turekian,et al.  Distribution of the Elements in Some Major Units of the Earth's Crust , 1961 .

[85]  E. E. Bray,et al.  Distribution of n-paraffins as a clue to recognition of source beds , 1961 .

[86]  Bin Zhao,et al.  Multi-stage hydrocarbon migration and accumulation of Permian petroleum system in the Zaysan Basin, NE Kazakhstan , 2022 .