Reef bioerosion : agents and processes

Coral reef maintenance depends on the balance between constructive and destructive forces. Constructive forces are mainly calcification and growth of corals and encrusting coralline algae. Destructive forces comprise physical, chemical, and biological erosion. Bioerosion is considered as the main force of reef degradation because physical erosion (storms) is temporary and localized, and chemical erosion is considered as negligible due to the actual ocean chemistry (Scoffin et al. 1980). Reef bioerosion affects sedimentary and skeletal carbonate substrates. It plays an important role in reef sedimentation, diversity maintenance by creating habitats and by providing food resources, and in biogeochemical cycles (recycling of dissolved Ca2+ and C). Thus, bioerosion is an integral part of the coral reef carbonate balance. The concept of bioerosion was introduced by Neumann (1966). It includes biocorrosion, which refers to destruction of carbonates by chemical means, and bioabrasion which refers to mechanical removal of carbonates by organisms (Golubic and Schneider 1979; Schneider and Torunski 1983).

[1]  P. Scott DISTRIBUTION, HABITAT AND MORPHOLOGY OF THE CARIBBEAN CORAL- AND ROCK-BORING BIVALVE,LITHOPHAGA BISULCATA (d'ORBIGNY) (MYTILIDAE: LITHOPHAGINAE) , 1988 .

[2]  S. Walker Traces of Gastropod Predation on Molluscan Prey in Tropical Reef Environments , 2007 .

[3]  R. Bak,et al.  The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation , 1976 .

[4]  K. Kleemann Biocorrosion by Bivalves , 1996 .

[5]  P. Hutchings,et al.  The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia , 2002 .

[6]  S. Golubić,et al.  Endoliths and the Depth of the Photic Zone: DISCUSSION , 1982 .

[7]  S. Golubić,et al.  Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization , 1995 .

[8]  M. Wisshak,et al.  Current developments in bioerosion , 2008 .

[9]  G. De’ath,et al.  Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. , 2005, Marine pollution bulletin.

[10]  A. Knoll,et al.  Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, central East Greenland , 1988, Journal of Paleontology.

[11]  D. R. Kobluk,et al.  Algal borings and framboidal pyrite in Upper Ordovician brachiopods , 1977 .

[12]  E. W. Frankenberg,et al.  Intertidal bioerosion by the chiton, Acanthopleura granulata; San Salvator, Bahamas , 1990 .

[13]  A. Knoll,et al.  Organically preserved microbial endoliths from the late Proterozoic of East Greenland , 1986, Nature.

[14]  B. Helmuth,et al.  Chronic parrotfish grazing impedes coral recovery after bleaching , 2006, Coral Reefs.

[15]  M. Risk,et al.  The effect of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata , 1988, Coral Reefs.

[16]  S. Golubić,et al.  The lithobiontic ecological niche, with special reference to microorganisms , 1981 .

[17]  P. Trudinger,et al.  Biogeochemical cycling of mineral-forming elements. , 1979 .

[18]  R. W. Frey The Study of Trace Fossils , 1975 .

[19]  E. Edinger,et al.  Bioerosion in Acropora across the continental shelf of the Great Barrier Reef , 1995, Coral Reefs.

[20]  S. Golubić,et al.  Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions , 2000 .

[21]  G. Russ Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. I: Levels of variability across the entire continental shelf , 1984 .

[22]  Mills,et al.  Ingestion and transformation of algal turf by Echinometra mathaei on Tiahura fringing reef (French Polynesia). , 2000, Journal of experimental marine biology and ecology.

[23]  S. Golubić,et al.  Chapter 2.4 Carbonate Dissolution , 1979 .

[24]  M. R. Carriker,et al.  Excavation of Boreholes by the Gastropod, Urosalpinx: An Analysis by Light and Scanning Electron Microscopy , 1969 .

[25]  K. Rützler The burrowing sponges of Bermuda , 1974 .

[26]  E. Harper Are conchiolin sheets in corbulid bivalves primarily defensive , 1994 .

[27]  P. Hutchings,et al.  Patterns of recruitment of polychaetes to coral substrates at Lizard Island, Great Barrier Reef–an experimental approach , 1982 .

[28]  R. Steneck,et al.  Coral Reefs Under Rapid Climate Change and Ocean Acidification , 2007, Science.

[29]  C. Rogers,et al.  Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands , 2008, Coral Reefs.

[30]  J. Schneider,et al.  Biokarst on Limestone Coasts, Morphogenesis and Sediment Production , 1983 .

[31]  T. Cedhagen Taxonomy and biology of Hyrrokkin sarcophaga gen. et sp. n., a parasitic foraminiferan (Rosalinidae) , 1994 .

[32]  T. McClanahan,et al.  The role of inorganic nutrients and herbivory in controlling microbioerosion of carbonate substratum , 2005, Coral Reefs.

[33]  D. R. Kobluk,et al.  Calcification of exposed filaments of endolithic algae, micrite envelope formation and sediment production , 1977 .

[34]  C. Perry Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates , 1998 .

[35]  P. Glynn,et al.  Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world , 2008, Proceedings of the National Academy of Sciences.

[36]  T. Lecampionalsumard Les Cyanophycées endolithes marines. Systématique, ultrastructure, écologie et biodestruction , 1979 .

[37]  C. Birkeland,et al.  Life and Death of Coral Reefs , 2012 .

[38]  R. Hill,et al.  A basidiomycete isolated from the skeleton of Pocillopora damicornis (Scleractinia) selectively stimulates short-term survival of coral skeletogenic cells , 2004 .

[39]  D. Bellwood,et al.  Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change , 2007, Current Biology.

[40]  T. Aline Dissolution of Dead Corals by Euendolithic Microorganisms Across the Northern Great Barrier Reef (Australia) , 2008, Microbial Ecology.

[41]  Mark A. Wilson,et al.  Macroborings and the Evolution of Marine Bioerosion , 2007 .

[42]  M. Kühl,et al.  Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica , 2007 .

[43]  Arnold I. Miller,et al.  Production and Cycling of Calcium Carbonate in a Shelf-Edge Reef System (St. Croix, U.S. Virgin Islands): Applications to the Nature of Reef Systems in the Fossil Record , 1990 .

[44]  J. Warme Borings As Trace Fossils, and the Processes of Marine Bioerosion , 1975 .

[45]  C. Payri,et al.  Bioerosion of the coralline alga Hydrolithon onkodes by microborers in the coral reefs of Moorea, Fr , 2001 .

[46]  W. Jaap,et al.  Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. , 2005, Marine pollution bulletin.

[47]  Mark A. Wilson,et al.  Patterns and Processes in the Ordovician Bioerosion Revolution , 2006 .

[48]  P. Hutchings,et al.  Temporal variations of macroborers in massive Porites lobata on Moorea, French Polynesia , 1992, Coral Reefs.

[49]  S. Zea Taxonomy of the Caribbean excavating sponge species complex Cliona caribbaea - C. aprica - C. langae (Porifera, Hadromerida, Clionaidae) , 2003 .

[50]  A. Tudhope,et al.  Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia , 1985 .

[51]  O. Hoegh‐Guldberg Climate change, coral bleaching and the future of the world's coral reefs , 1999 .

[52]  M. Peyrot-Clausade,et al.  Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia) , 1995 .

[53]  K. Rützler Impact of crustose clionid sponges on Caribbean reef corals , 2002 .

[54]  J. Milliman,et al.  Micritic cement in microborings is not necessarily a shallow-water indicator , 1984 .

[55]  M. Atkinson,et al.  Effects of elevated pCO2 on epilithic and endolithic metabolism of reef carbonates , 2006 .

[56]  C. Langdon,et al.  Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths , 2009 .

[57]  R. Reid,et al.  The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites , 2000 .

[58]  S. Pomponi Cytological Mechanisms of Calcium Carbonate Excavation by Boring Sponges , 1980 .

[59]  J. Bruggemann,et al.  Foraging by the stoplight parrotfish Sparisoma viride. I.: Food selection in different, socially determined habitats , 1994 .

[60]  P. Hutchings,et al.  Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers , 2002, Coral Reefs.

[61]  K. J. Lukas,et al.  NEW ENDOLITHIC CYANOPHYTES FROM THE NORTH ATLANTIC OCEAN. III. HYELLA PYXIS LUKAS & HOFFMAN SP. NOV. 1 , 1984 .

[62]  J. B. Lewis Reproduction, larval development and functional relationships of the burrowing, spionid polychaete Dipolydora armata with the calcareous hydrozoan Millepora complanata , 1998 .

[63]  Effects of eutrophication on reef-building corals , 1987 .

[64]  K. Kim,et al.  Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals , 2001, Hydrobiologia.

[65]  C. Schönberg,et al.  The Bioeroding Sponge Aka paratypica, a Modern Tracemaking Analogue for the Paleozoic Ichnogenus Entobia devonica , 2006 .

[66]  M. L. Reaka-Kudla,et al.  Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands , 1996, Coral Reefs.

[67]  Didier Boucher,et al.  Calcium carbonate budget of a fringing reef on the West Coast of Barbados , 1977 .

[68]  S. Campbell Palaeoconchocelis starmachii, a carbonate boring microfossil from the Upper Silurian of Poland (425 million years old): implications for the evolution of the Bangiaceae (Rhodophyta) , 1980 .

[69]  P. Sammarco,et al.  Bioerosion of corals and the influence of damselfish territoriality: A preliminary study , 2004, Oecologia.

[70]  Ove Hoegh-Guldberg,et al.  Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef , 2005, Journal of Experimental Biology.

[71]  K. J. Lukas,et al.  NEW ENDOLITHIC CYANOPHYTES FROM THE NORTH ATLANTIC OCEAN: I. CYANOSACCUS PIRIFORMIS GEN. ET SP. NOV. 1 , 1981 .

[72]  A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications , 1990 .

[73]  Y. Loya,et al.  Bioerosion in ancient and contemporary corals of the genus Pontes: patterns and palaeoenvironmental implications , 1991 .

[74]  M. Úriz,et al.  Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution , 2000 .

[75]  J. Jaubert,et al.  Unprecedented bleaching-induced mortality in Porites spp. at Rangiroa Atoll, French Polynesia , 2001 .

[76]  S. Golubić,et al.  Microborings and Microbial Endoliths: Geological Implications , 2007 .

[77]  S. Campbell Precambrian endoliths discovered , 1982, Nature.

[78]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[79]  W. Cobb Fine Structural Features of Destruction of Calcareous Substrata by the Burrowing Sponge Cliona celata , 1975 .

[80]  A. Neumann,et al.  OBSERVATIONS ON COASTAL EROSION IN BERMUDA AND MEASUREMENTS OF THE BORING RATE OF THE SPONGE, CLIONA LAMPA1,2 , 1966 .

[81]  O. Hoegh-Guldberg,et al.  Ocean acidification causes bleaching and productivity loss in coral reef builders , 2008, Proceedings of the National Academy of Sciences.

[82]  S. Golubić,et al.  ENDOLITHIC MICROFLORA ARE MAJOR PRIMARY PRODUCERS IN DEAD CARBONATE SUBSTRATES OF HAWAIIAN CORAL REEFS 1 , 2006 .

[83]  C. Perry,et al.  Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: Taphonomic signatures of reef accretion and reef depositional events , 2008 .

[84]  G. W. Otter ROCK-DESTROYING ORGANISMS IN RELATION TO CORAL REEFS , 1937 .

[85]  R. Bak,et al.  Patterns of echinoids bioerosion in two Pacific coral reef lagoons , 1990 .

[86]  P. Hutchings Biological destruction of coral reefs , 1986, Coral Reefs.

[87]  D. Bellwood,et al.  Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef , 2008, Coral Reefs.

[88]  S. Golubić,et al.  Microbial assemblages of the bioerosional notch along tropical limestone coasts , 1996 .

[89]  Chazottes,et al.  Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure , 1998 .

[90]  W. Loh,et al.  Molecular identity of the unique symbiotic dinoflagellates found in the bioeroding demosponge Cliona orientalis , 2005 .

[91]  S. Golubić,et al.  NEW ENDOLITHIC CYANOBACTERIA FROM THE ARABIAN GULF. I. HYELLA IMMANIS SP. NOV. 1 , 1991 .

[92]  Chris Langdon,et al.  Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment , 2005 .

[93]  E. Edinger,et al.  Bioerosion of Live Massive Corals and Branching Coral Rubble on Indonesian Coral Reefs , 2000 .

[94]  L. Land The fate of reef-derived sediment on the north Jamaican island slope , 1979 .

[95]  J. Schneider,et al.  CONSTRUCTION AND DESTRUCTION OF CARBONATES BY MARINE AND FRESHWATER CYANOBACTERIA , 1999 .

[96]  S. Lewis,et al.  Parrotfish abundance and selective corallivory on a Belizean coral reef , 2006 .

[97]  C. Linares,et al.  Effects of a mass mortality event on gorgonian reproduction , 2008, Coral Reefs.

[98]  P. Hutchings,et al.  Bioerosion experiments at Lizard Island, Great Barrier Reef , 1994, Coral Reefs.

[99]  S. Golubić,et al.  SCANNING ELECTRON MICROSCOPY OF ENDOLITHIC ALGAE AND FUNGI USING A MULTIPURPOSE CASTING‐EMBEDDING TECHNIQUE , 1970 .

[100]  W. Miller Trace Fossils: Concepts, Problems, Prospects , 2011 .

[101]  J. S. Peel,et al.  Endolithic Cyanobacteria from the Middle Cambrian of North Greenland , 2005 .

[102]  K. J. Lukas,et al.  Boring Microorganisms and Microborings in Carbonate Substrates , 1975 .

[103]  T. McClanahan,et al.  Fish and sea urchin herbivory and competition in Kenyan coral reef lagoons: the role of reef management , 1994 .

[104]  G. Bavestrello,et al.  Taxonomy-related differences in the excavating micro-patterns of boring sponges , 2003, Journal of the Marine Biological Association of the United Kingdom.

[105]  S. Golubić,et al.  Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia , 2005, Coral Reefs.

[106]  S. Golubić,et al.  Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia) , 1995 .

[107]  S. Golubić,et al.  Palaeoconchocelis starmachii gen. n., sp. n., an endolithic rhodophyte (Bangiaceae) from the Silurian of Poland , 1979 .

[108]  R. Bathurst Boring algae, micrite envelopes and lithification of molluscan biosparites , 2007 .

[109]  C. Schönberg A history of sponge erosion: from past myths and hypotheses to recent approaches , 2008 .

[110]  D. R. Kobluk,et al.  The Oldest Macroborers: Lower Cambrian of Labrador , 1977, Science.

[111]  S. Golubić,et al.  Endolithic fungi in marine ecosystems. , 2005, Trends in microbiology.

[112]  P. Cuet,et al.  The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean) , 2002, Coral Reefs.

[113]  C. Sweeney,et al.  Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef , 2000 .

[114]  F. Mackenzie,et al.  Decreased abundance of crustose coralline algae due to ocean acidification , 2008 .

[115]  K HubbardD,et al.  陸棚端礁システム(米国,バージン諸島,St.Croix)における炭酸カルシウムの生産と循環 地質時代の礁システムの性質解明に適用 , 1990 .

[116]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[117]  Evan N. Edinger,et al.  Normal Coral Growth Rates on Dying Reefs: Are Coral Growth Rates Good Indicators of Reef Health? , 2000 .

[118]  Richard A. Feely,et al.  Impacts of ocean acidification on marine fauna and ecosystem processes , 2008 .

[119]  C. Conand,et al.  Bioerosion by the sea urchin Echinometra on La Reunion reefs (Indian Ocean) and comparison with Tiahura reefs (French Polynesia) , 1988 .

[120]  R. Bromley,et al.  Comparative analysis of bioerosion in deep and shallow water, Pliocene to recent, Mediterranean Sea , 1990 .

[121]  T. Hansen,et al.  Spatial Variation of Naticid Gastropod Predation in the Eocene of North-America , 1995 .

[122]  L. Kaufman,et al.  Endolithic fungi in reef-building corals (Order : Scleractinia) are common, cosmopolitan, and potentially pathogenic. , 2000, The Biological bulletin.

[123]  C. Perry,et al.  Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica , 2007, Coral Reefs.

[124]  P. Davies,et al.  Initial colonisation, erosion and accretion on coral substrates – experimental results Lizard Island, Great Barrier Reef , 1983 .

[125]  C. Schönberg,et al.  Induced colonization of corals by a clionid bioeroding sponge , 2001, Coral Reefs.

[126]  J. Schneider Biological and inorganic factors in the destruction of limestone coasts , 1976 .

[127]  M. Risk,et al.  Increase in Cliona delitrix Infestation of Montastrea cavernosa Heads on an Organically Polluted Portion of the Grand Cayman Fringing Reef , 1985 .

[128]  A. Tribollet The boring microflora in modern coral reef ecosystems: a review of its roles , 2008 .

[129]  F. Garcia-Pichel Plausible mechanisms for the boring on carbonates by microbial phototrophs , 2006 .

[130]  C. Schönberg Substrate effects on the bioeroding demosponge Cliona orientalis. 2. Substrate colonisation and tissue growth , 2003 .

[131]  E. Edinger,et al.  Environmental and Substrate Control on Paleozoic Bioerosion in Corals and Stromatoporoids, Anticosti Island, Eastern Canada , 2004 .

[132]  Y. Loya,et al.  Endolithic algae: an alternative source of photoassimilates during coral bleaching , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[133]  C. Schönberg Bioeroding sponges common to the central Australian Great Barrier Reef: Descriptions of three new species, two new records, and additions to two previously described species , 2000, Senckenbergiana maritima.

[134]  D. Gherardi,et al.  Composition and community structure of the coralline algal reefs from Atol das Rocas, South Atlantic, Brazil , 2001, Coral Reefs.

[135]  M. Thorndyke,et al.  Near-future levels of ocean acidificat ion reduce fert ilizat ion success in a sea urchin , 2018 .

[136]  C. Perry Macroboring of Pleistocene Coral Communities, Falmouth Formation, Jamaica , 2000 .