A fractional perspective on the trajectory control of redundant and hyper-redundant robot manipulators

Abstract The manuscript develops a new perspective for studying the trajectory control of planar manipulators using the Moore–Penrose pseudoinverse. Different mechanical structures are compared, namely redundant and hyper-redundant robots. The proposed method is based on fractional calculus and fractional matrix powers. The signals can be interpreted as time-space waves propagating along the trajectory planing system. Several simulations demonstrate the performance of the novel scheme in the analysis of pseudoinverse-based closed-loop systems.

[1]  J. Rosenthal,et al.  Finding Generators for Markov Chains via Empirical Transition Matrices, with Applications to Credit Ratings , 2001 .

[2]  Gregory S. Chirikjian,et al.  A Geometric Approach to Hyper-Redundant Manipulator Obstacle Avoidance , 1992 .

[3]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[4]  Dragomir N. Nenchev,et al.  Redundancy resolution through local optimization: A review , 1989, J. Field Robotics.

[5]  Erdinc Sahin Conkur,et al.  Clarifying the definition of redundancy as used in robotics , 1997, Robotica.

[6]  Yunong Zhang,et al.  Pseudoinverse-based jerk-level solutions of D3Z0, D2Z1, D1Z2 and D0Z3 types to redundant manipulator's inverse kinematics , 2014, Fifth International Conference on Intelligent Control and Information Processing.

[7]  Rainer Palm,et al.  Control of a redundant manipulator using fuzzy rules , 1992 .

[8]  J. Machado,et al.  A Review of Definitions for Fractional Derivatives and Integral , 2014 .

[9]  Bojan Nemec,et al.  Null space velocity control with dynamically consistent pseudo-inverse , 2000, Robotica.

[10]  J. A. Tenreiro Machado,et al.  Chaotic Phenomena and Fractional-Order Dynamics in the Trajectory Control of Redundant Manipulators , 2002 .

[11]  Alexander Dietrich,et al.  An overview of null space projections for redundant, torque-controlled robots , 2015, Int. J. Robotics Res..

[12]  A. Arias,et al.  BINOMIAL THEOREM APPLICATIONS IN MATRIX FRACTIONAL POWERS CALCULATION , 1990 .

[13]  Nicholas J. Higham,et al.  A Schur-Padé Algorithm for Fractional Powers of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[14]  Bruno Siciliano,et al.  Kinematic control of redundant robot manipulators: A tutorial , 1990, J. Intell. Robotic Syst..

[15]  António M. Lopes,et al.  Fractional Order Control of a Hexapod Robot , 2004 .

[16]  José António Tenreiro Machado,et al.  Fractional dynamics and MDS visualization of earthquake phenomena , 2013, Comput. Math. Appl..

[17]  Miomir Vukobratović,et al.  Contribution to Control of Redundant Robotic Manipulators in an Environment with Obstacles , 1986 .

[18]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Bruce W. Char,et al.  A Tutorial Introduction to Maple , 1986, J. Symb. Comput..

[20]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[21]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[22]  Jun Wang,et al.  Obstacle avoidance for kinematically redundant manipulators using a dual neural network , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[23]  Maria da Graça Marcos,et al.  Fractional dynamics in the trajectory control of redundant manipulators , 2008 .

[24]  J. Machado,et al.  The N-link pendulum: Embedding nonlinear dynamics into the multidimensional scaling method , 2016 .

[25]  Yoshihiko Nakamura,et al.  Optimal Redundancy Control of Robot Manipulators , 1987 .

[26]  M. Rivero,et al.  Fractional calculus: A survey of useful formulas , 2013, The European Physical Journal Special Topics.

[27]  Keith L. Doty,et al.  A Theory of Generalized Inverses Applied to Robotics , 1993, Int. J. Robotics Res..

[28]  José António Tenreiro Machado,et al.  Dynamics of the N-link pendulum: a fractional perspective , 2017, Int. J. Control.

[29]  António M Lopes,et al.  Fractional order models of leaves , 2014 .

[30]  Simone G. O. Fiori,et al.  Leap-frog-type learning algorithms over the Lie group of unitary matrices , 2008, Neurocomputing.

[31]  Theodore Charitos,et al.  Computing short‐interval transition matrices of a discrete‐time Markov chain from partially observed data , 2008, Statistics in medicine.

[32]  Nicholas J. Higham,et al.  Algorithms for the matrix pth root , 2005, Numerical Algorithms.

[33]  Homayoun Seraji,et al.  Configuration control of redundant manipulators: theory and implementation , 1989, IEEE Trans. Robotics Autom..

[34]  L. Dorcak Numerical Models for the Simulation of the Fractional-Order Control Systems , 2002 .

[35]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[36]  J. Astin,et al.  Extension of the Formula for the Nth Power of a Square Matrix to Negative and Fractional Values of N , 1967, The Mathematical Gazette.

[37]  Frederick V. Waugh,et al.  On Fractional Powers of a Matrix , 1967 .

[38]  S. Shankar Sastry,et al.  Dynamic control of redundant manipulators , 1989, J. Field Robotics.

[39]  António M. Lopes,et al.  Rhapsody in fractional , 2014 .

[40]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[41]  José António Tenreiro Machado,et al.  A multi-objective approach for the motion planning of redundant manipulators , 2012, Appl. Soft Comput..