Green tire technology: Effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding.

The effect of replacing carbon black (CB) by rice husk derived type-I nanocellulose (RHNC) in natural rubber vulcanization is presented in this study. The synthesized RHNC was characterized using various analytical techniques like FTIR, XRD, SEM, TEM, DLS, TGA etc. The cure characteristics, mechanical, technological, thermal, barrier and dynamic mechanical properties of the composites were analysed. The mechanical properties of the NR composites containing 30 wt% of CB are comparable with the composite containing 25 wt% of CB and 5 wt% of RHNC. The DMA studies show that the loss tangent (tan δ) at 60 °C is lower for the composite containing 5 wt% of RHNC and 25 wt% CB compared to the composite containing 30 wt% CB. This shows that RHNC can impart low rolling resistance, which is a crucial parameter for green tire applications.

[1]  R. Sun,et al.  Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw , 2001 .

[2]  Morsyleide de Freitas Rosa,et al.  Extraction and characterization of nanocellulose structures from raw cotton linter. , 2013, Carbohydrate polymers.

[3]  Abdul Khalil H.P.S.,et al.  Cellulose nanowhiskers from oil palm empty fruit bunch biomass as green fillers , 2017 .

[4]  K. Priya Dasan,et al.  Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. , 2013, Carbohydrate polymers.

[5]  A. Dufresne,et al.  Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. , 2003, Biomacromolecules.

[6]  Sabu Thomas,et al.  Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. , 2015, International journal of biological macromolecules.

[7]  Y. Hsieh,et al.  Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. , 2015, Carbohydrate polymers.

[8]  M. Paoli,et al.  Mechanical Properties, Morphology and Thermal Degradation of a Biocomposite of Polypropylene and Curaua Fibers: Coupling Agent Effect , 2013 .

[9]  C. Li,et al.  Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites , 2017 .

[10]  R. Baan,et al.  Carcinogenic Hazards from Inhaled Carbon Black, Titanium Dioxide, and Talc not Containing Asbestos or Asbestiform Fibers: Recent Evaluations by an IARC Monographs Working Group , 2007, Inhalation toxicology.

[11]  S. H. Xu,et al.  Exploring nanocrystalline cellulose as a green alternative of carbon black in natural rubber/butadiene rubber/styrene-butadiene rubber blends , 2014 .

[12]  Su-jin Kim,et al.  Effect of degree of polymerization on the mechanical properties of regenerated cellulose fibers using synthesized 1-allyl-3-methylimidazolium chloride , 2013, Fibers and Polymers.

[13]  Sabu Thomas,et al.  Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties , 2012 .

[14]  I. Ahmad,et al.  Isolation and Characterization of Cellulose Nanocrystals from Agave angustifolia Fibre , 2013 .

[15]  M. Saeb,et al.  Processing and structure–property relationships of natural rubber/wheat bran biocomposites , 2016, Cellulose.

[16]  F. Sakli,et al.  Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre , 2011 .

[17]  Canhui Lu,et al.  Conductive natural rubber/carbon black nanocomposites via cellulose nanowhisker templated assembly: tailored hierarchical structure leading to synergistic property enhancements , 2015 .

[18]  W. Hamad,et al.  Structure–process–yield interrelations in nanocrystalline cellulose extraction , 2010 .

[19]  P. Stefani,et al.  NANOCELLULOSE FROM RICE HUSK FOLLOWING ALKALINE TREATMENT TO REMOVE SILICA , 2011 .

[20]  Nittaya Rattanasom,et al.  Reinforcement of natural rubber with silica/carbon black hybrid filler , 2007 .

[21]  S. C. Peterson,et al.  Birchwood biochar as partial carbon black replacement in styrene–butadiene rubber composites , 2016 .

[22]  Julien Bras,et al.  Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. , 2012, Carbohydrate polymers.

[23]  S. De,et al.  Effect of particulate fillers on short jute fiber-reinforced natural rubber composites , 1982 .

[24]  Cintil Jose Chirayil,et al.  Isolation and characterization of cellulose nanofibrils from Helicteres isora plant , 2014 .

[25]  K. Reddy,et al.  Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. , 2014, Carbohydrate polymers.

[26]  K. Straif,et al.  Carcinogenicity of polycyclic aromatic hydrocarbons. , 2005, The Lancet. Oncology.

[27]  A. Dufresne,et al.  Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. , 2003, Biomacromolecules.

[28]  S. Boughali,et al.  Extraction and characterization of cellulose microfibers from Retama raetam stems , 2019, Polímeros.

[29]  S. Elkoun,et al.  Isolation of cellulose-II nanospheres from flax stems and their physical and morphological properties. , 2017, Carbohydrate polymers.

[30]  H. Neue Methane emission from rice fields , 1993 .

[31]  T. Sabu,et al.  REVIEW OF RECENT RESEARCH IN NANO CELLULOSE PREPARATION FROM DIFFERENT LIGNOCELLULOSIC FIBERS , 2014 .

[32]  Sabu Thomas,et al.  Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. , 2013, The journal of physical chemistry. B.

[33]  A. Dufresne,et al.  Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk , 2012 .

[34]  V. Rajendran,et al.  High-purity nano silica powder from rice husk using a simple chemical method , 2014 .

[35]  E. J. Foster,et al.  Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue , 2017 .

[36]  S. Gopinath,et al.  Synthesis and characterization of cotton fiber-based nanocellulose. , 2017, International journal of biological macromolecules.

[37]  Zhiguo Wang,et al.  High-yield preparation of cellulose nanofiber by small quantity acid assisted milling in glycerol , 2019, Cellulose.

[38]  D. Tripathy,et al.  Interaction between Carboxylated Nitrile Rubber and Precipitated Silica: Role of (3-Aminopropyl)Triethoxysilane , 1996 .

[39]  B. Fazlul,et al.  Review of Extraction of Silica from Agricultural Wastes Using Acid Leaching Treatment , 2012 .

[40]  A. Mandal,et al.  Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization , 2011 .

[41]  Sabu Thomas,et al.  Green nanocomposites of natural rubber/nanocellulose: Membrane transport, rheological and thermal degradation characterisations , 2013 .

[42]  Monica Bansal,et al.  Bionanocomposites reinforced with cellulose nanofibers derived from sugarcane bagasse , 2018 .

[43]  Qi Zhou,et al.  Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol-ene Chemistry. , 2015, ACS applied materials & interfaces.

[44]  P. Deb,et al.  Isolation and characterization of crystalline, autofluorescent, cellulose nanocrystals from saw dust wastes , 2015 .

[45]  Sabu Thomas,et al.  Short sisal fiber reinforced styrene‐butadiene rubber composites , 1995 .

[46]  Sabu Thomas,et al.  Dynamic mechanical properties of oil palm microfibril-reinforced natural rubber composites , 2010 .

[47]  V. Álvarez,et al.  Extraction of cellulose and preparation of nanocellulose from sisal fibers , 2008 .

[48]  B. Schartel,et al.  Multilayer Graphene/Carbon Black/Chlorine Isobutyl Isoprene Rubber Nanocomposites , 2016, Polymers.

[49]  J. George,et al.  Cellulose nanocrystals: synthesis, functional properties, and applications , 2015, Nanotechnology, science and applications.

[50]  Xiaoli Liu,et al.  The preparation of microcrystalline cellulose–nanoSiO2 hybrid materials and their application in tire tread compounds , 2017 .

[51]  R. Patwa,et al.  Green Composites with Excellent Barrier Properties , 2018, Advanced Green Composites.

[52]  P. Sae-oui,et al.  Reinforcement of multiwalled carbon nanotube in nitrile rubber: in comparison with carbon black, conductive carbon black, and precipitated silica , 2016 .

[53]  Quim Tarrés Farrés,et al.  From pine sawdust to cellulose nanofibres , 2016 .

[54]  S. S. Sarkawi,et al.  Natural Rubber-Silica Combinations for Low Rolling Resistance Truck Tyre Treads , 2012 .

[55]  Jo Anne Shatkin,et al.  Current characterization methods for cellulose nanomaterials. , 2018, Chemical Society reviews.

[56]  P. Panda,et al.  Reinforcing effect of nanosilica on the properties of natural rubber/reclaimed ground rubber tire vulcanizates , 2013 .