On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field

Heterogeneous incompressible fluid flows with jumps in the viscous properties are solved with the particle finite element method using continuous and discontinuous pressure fields. We show the importance of using discontinuous pressure fields to avoid errors in the incompressibility condition near the interface.

[1]  Eugenio Oñate,et al.  Fluid-structure interaction using the particle finite element method , 2006 .

[2]  Tayfun E. Tezduyar,et al.  EDICT for 3D computation of two-fluid interfaces , 2000 .

[3]  J. Sethian Evolution, implementation, and application of level set and fast marching methods for advancing fronts , 2001 .

[4]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[5]  P. Minev,et al.  A finite element technique for multifluid incompressible flow using Eulerian grids , 2003 .

[6]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[7]  Ramon Codina,et al.  Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .

[8]  Jerzy M. Floryan,et al.  Numerical Methods for Viscous Flows With Moving Boundaries , 1989 .

[9]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[10]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[11]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[12]  Tayfun E. Tezduyar,et al.  CFD methods for three-dimensional computation of complex flow problems , 1999 .

[13]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[14]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[15]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[16]  James M. Hyman,et al.  Numerical methods for tracking interfaces , 1984 .

[17]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[18]  L. Quartapelle,et al.  A projection FEM for variable density incompressible flows , 2000 .

[19]  A. Smolianski Finite‐element/level‐set/operator‐splitting (FELSOS) approach for computing two‐fluid unsteady flows with free moving interfaces , 2005 .

[20]  Marek Behr,et al.  Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces , 1998 .

[21]  Eugenio Oñate,et al.  Multi-fluid flows with the Particle Finite Element Method , 2009 .

[22]  Eugenio Oñate,et al.  A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation , 2000 .

[23]  L. Tobiska,et al.  On spurious velocities in incompressible flow problems with interfaces , 2007 .

[24]  Sharon R. Lubkin,et al.  Numerical analysis of interfacial two‐dimensional Stokes flow with discontinuous viscosity and variable surface tension , 2001 .

[25]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .