Himawari-8 Aerosol Optical Depth (AOD) Retrieval Using a Deep Neural Network Trained Using AERONET Observations

[1]  Zoran Obradovic,et al.  A Data-Mining Technique for Aerosol Retrieval Across Multiple Accuracy Measures , 2010, IEEE Geoscience and Remote Sensing Letters.

[2]  Taixin Zhang,et al.  Stacking machine learning model for estimating hourly PM2.5 in China based on Himawari 8 aerosol optical depth data. , 2019, The Science of the total environment.

[3]  Yang Wang,et al.  Preliminary Investigation of a New AHI Aerosol Optical Depth (AOD) Retrieval Algorithm and Evaluation with Multiple Source AOD Measurements in China , 2018, Remote. Sens..

[4]  Lorraine Remer,et al.  Machine Learning and Bias Correction of MODIS Aerosol Optical Depth , 2009, IEEE Geoscience and Remote Sensing Letters.

[5]  Lei Zhang,et al.  Investigating the performance of satellite-based models in estimating the surface PM2.5 over China. , 2020, Chemosphere.

[6]  G. Meister,et al.  Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency , 2015 .

[7]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[8]  J. H. Belle,et al.  Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach. , 2017, Environmental science & technology.

[9]  David P. Roy,et al.  Investigation of Sentinel-2 Bidirectional Reflectance Hot-Spot Sensing Conditions , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Didier Tanré,et al.  Aerosol retrieval experiments in the ESA Aerosol_cci project , 2013 .

[11]  Bin Xie,et al.  Deep Convolutional Neural Network for Mapping Smallholder Agriculture Using High Spatial Resolution Satellite Image , 2019, Sensors.

[12]  Hongzhang Xu,et al.  Deep learning in environmental remote sensing: Achievements and challenges , 2020, Remote Sensing of Environment.

[13]  Andrew M. Sayer,et al.  Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data , 2013 .

[14]  S. Shamshirband,et al.  Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain. , 2019, The Science of the total environment.

[15]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[16]  Tongren Xu,et al.  Global aerosol change in the last decade: An analysis based on MODIS data , 2014 .

[17]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[18]  Arata Okuyama,et al.  Preliminary validation of Himawari-8/AHI navigation and calibration , 2015, SPIE Optical Engineering + Applications.

[19]  Stavros Kolios,et al.  Quantitative Aerosol Optical Depth Detection during Dust Outbreaks from Meteosat Imagery Using an Artificial Neural Network Model , 2019, Remote. Sens..

[20]  Zoran Obradovic,et al.  A Data-Mining Approach for the Validation of Aerosol Retrievals , 2008, IEEE Geoscience and Remote Sensing Letters.

[21]  Lianfa Li,et al.  A Robust Deep Learning Approach for Spatiotemporal Estimation of Satellite AOD and PM2.5 , 2020, Remote. Sens..

[22]  Alexei Lyapustin,et al.  Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013-2015, using a spatiotemporal land-use random-forest model. , 2019, Environment international.

[23]  P. Pilewskie,et al.  Pinatubo and pre‐Pinatubo optical‐depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data , 1993 .

[24]  Alexei Lyapustin,et al.  Merging regional and global aerosol optical depth records from major available satellite products , 2020 .

[25]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[26]  Qingqing He,et al.  Satellite-based mapping of daily high-resolution ground PM 2.5 in China via space-time regression modeling , 2018 .

[27]  Sonoyo Mukai,et al.  Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[28]  Xin Zuo,et al.  Comparison of Six Machine Learning Methods for Estimating PM2.5 Concentration Using the Himawari-8 Aerosol Optical Depth , 2020, Journal of the Indian Society of Remote Sensing.

[29]  Xiaoou Tang,et al.  Image Super-Resolution Using Deep Convolutional Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  José Antonio Lozano,et al.  Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Alexei Lyapustin,et al.  MODIS Collection 6 MAIAC algorithm , 2018, Atmospheric Measurement Techniques.

[32]  Bin Zhang,et al.  Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images , 2020, Remote Sensing of Environment.

[33]  Liangpei Zhang,et al.  Estimating Ground‐Level PM2.5 by Fusing Satellite and Station Observations: A Geo‐Intelligent Deep Learning Approach , 2017, 1707.03558.

[34]  Gerrit de Leeuw,et al.  Retrieval of aerosol optical depth over land using two‐angle view satellite radiometry during TARFOX , 1998 .

[35]  Michael Dorman,et al.  Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA , 2018, Remote. Sens..

[36]  Hiroshi Murakami,et al.  Common Retrieval of Aerosol Properties for Imaging Satellite Sensors , 2018 .

[37]  Teruyuki Nakajima,et al.  Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. , 1986 .

[38]  Arata Okuyama,et al.  Validation of Himawari-8/AHI Radiometric Calibration Based on Two Years of In-Orbit Data , 2018 .

[39]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[40]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[41]  Jing Wei,et al.  Refining aerosol optical depth retrievals over land by constructing the relationship of spectral surface reflectances through deep learning: Application to Himawari-8 , 2020, Remote Sensing of Environment.

[42]  Zoran Obradovic,et al.  Uncertainty Analysis of Neural-Network-Based Aerosol Retrieval , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Gerrit de Leeuw,et al.  Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: Artificial neural network method , 2020 .

[44]  Li Li,et al.  A Dark Target Method for Himawari-8/AHI Aerosol Retrieval: Application and Validation , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[45]  D. Roy,et al.  Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods , 2012 .

[46]  Yiran Peng,et al.  Evaluation and uncertainty estimate of next-generation geostationary meteorological Himawari-8/AHI aerosol products. , 2019, The Science of the total environment.

[47]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[48]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[49]  Alexander Smirnov,et al.  Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network , 2010 .

[50]  P. Gupta,et al.  Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach , 2009 .

[51]  Robert C. Levy,et al.  MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations , 2014 .

[52]  Jasper R. Lewis,et al.  Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements , 2019, Atmospheric Measurement Techniques.

[53]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[54]  William L. Crosson,et al.  Estimating Ground-Level PM(sub 2.5) Concentrations in the Southeastern United States Using MAIAC AOD Retrievals and a Two-Stage Model , 2014 .

[55]  M. Lawrence,et al.  Black carbon dominates the aerosol absorption over the Indo-Gangetic Plain and the Himalayan foothills. , 2020, Environment international.

[56]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[57]  Yun Shi,et al.  Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm for Himawari-8 Data , 2019, Remote. Sens..

[58]  Lorraine A. Remer,et al.  Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions , 2018, Atmospheric Measurement Techniques.

[59]  Yu Li,et al.  Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network , 2019, Remote Sensing of Environment.

[60]  Zhanqing Li,et al.  Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach , 2019, Remote Sensing of Environment.

[61]  J. Schwartz,et al.  Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states. , 2012, Environmental science & technology.