The solution of the equation XA + AXT = 0 and its application to the theory of orbits

Abstract describe how to find the general solution of the matrix equation XA + AX T = 0 , with A ∈ C n × n , which allows us to determine the dimension of its solution space. This result has immediate applications in the theory of congruence orbits of matrices in C n × n , because the set { XA + AX T : X ∈ C n × n } is the tangent space at A to the congruence orbit of A. Hence, the codimension of this orbit is precisely the dimension of the solution space of XA + AX T = 0 . As a consequence, we also determine the generic canonical structure of matrices under the action of congruence. All these results can be directly extended to palindromic pencils A + λ A T .

[1]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[2]  Froilán M. Dopico,et al.  A Note on Generic Kronecker Orbits of Matrix Pencils with Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..

[3]  Juan-Miguel Gracia,et al.  Sylvester Matrix Equation for Matrix Pencils , 1996 .

[4]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[5]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[6]  CLASSIFICATION PROBLEMS FOR SYSTEMS OF FORMS AND LINEAR MAPPINGS , 2005 .

[7]  Volker Mehrmann,et al.  Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form , 2009, Numer. Linear Algebra Appl..

[8]  F. R. Gantmakher The Theory of Matrices , 1984 .

[9]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .

[10]  Erik Elmroth,et al.  Stratification of Controllability and Observability Pairs - Theory and Use in Applications , 2009, SIAM J. Matrix Anal. Appl..

[11]  P. Johansson StratiGraph software design and algorithms , 2006 .

[12]  Roger A. Horn,et al.  Canonical forms for complex matrix congruence and ∗congruence , 2006, 0709.2473.

[13]  R. Horn,et al.  Canonical matrices of bilinear and sesquilinear forms , 2007, 0709.2408.

[14]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[15]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[16]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[17]  William C. Waterhouse The codimension of singular matrix pairs , 1984 .

[18]  Immaculada De Hoyos Points of continuity of the Kronecker canonical form , 1990 .

[19]  U. Langer,et al.  Finite-element simulation of wave propagation in periodic piezoelectric SAW structures , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  H. W. Braden,et al.  The Equations ATX\pm XTA=B , 1999, SIAM J. Matrix Anal. Appl..

[21]  Wen-Wei Lin,et al.  Structure-Preserving Algorithms for Palindromic Quadratic Eigenvalue Problems Arising from Vibration of Fast Trains , 2008, SIAM J. Matrix Anal. Appl..

[22]  Alan Edelman,et al.  The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical forms , 1995 .

[23]  R. Horn,et al.  Congruences of a square matrix and its transpose , 2004, 0709.2489.

[24]  M. I. García-Planas,et al.  Stratification of linear systems. Bifurcation diagrams for families of linear systems , 1999 .

[25]  Roger A. Horn,et al.  Linear operators preserving t-congruence on matrices , 1992 .

[26]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[27]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..